

Introductory Tutorials Thermodynamics Project 2019

Exercise 1

In thermodynamics the concept of a thermal reservoir (or bath) in thermal contact with the system is often used in thought experiments. Such a bath has two essential properties.

- The thermal contact of the bath and the system is perfect and so is the transfer of heat.
- The temperature of the bath is constant.

We will examine the achievability of the second property of a thermal reservoir. We will calculate the change in temperature of a system that consists of a closed glass tube ($V = 100 \text{ ml}$) completely filled with water, which we will immerse in a bath of 100 L water. The initial temperature of the water in the tube is $50 \text{ }^{\circ}\text{C}$. The bath has a temperature of 300 K .

We assume that the density of water under these circumstances is constant and equal to $\rho = 1.0 \cdot 10^6 \text{ gm}^{-3}$. The heat capacity of water is $c = 4.2 \text{ Jg}^{-1}\text{K}^{-1}$ and the heat capacity of the glass of the tube is considered negligible.

- Calculate how much energy the bath has absorbed after the tube has reached the temperature of the bath. Assume that the change in temperature of the bath is negligible.
- Calculate the final temperature of the tube and the bath without the assumption of the former part.
- Repeat part b) for a bath of 10000 L and for a bath of 100 mL .
- Which of these three baths do you think is realistic for the definition of a bath?

Exercise 2

We want to measure the electrical work, performed by an electrical current in a resistor, according to the first law of thermodynamics. For that we build a calorimeter. Our calorimeter is a sealed vial, completely filled with water ($V=250 \text{ mL}$) and thermally isolated from its surroundings. In the middle of the vial is an electrical resistor of 10Ω .

The current is supplied by two wires through the lid of the vial. We can measure the temperature of the water in the vial with a thermometer with a resolution of $\pm 0.1 \text{ }^{\circ}\text{C}$. The heat capacity of water is $c_V = 4.2 \text{ Jg}^{-1}\text{K}^{-1}$, and its density is $\rho = 1.0 \cdot 10^6 \text{ gm}^{-3}$. We assume that these values are constant between $T = 300 \text{ K}$ and $T = 350 \text{ K}$.

- Which forms of work can be performed on the water and which on the resistor?
- Which parameters can you adapt for the most optimal instrument if we use the calorimeter between $T = 300 \text{ K}$ and $T = 350 \text{ K}$?
- Determine the values of the parameters from b) for which the change in temperature is equal to the resolution of the thermometer.
- Argue if this design is realistic. Can we test the first law of thermodynamics with this calorimeter?