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Summary Lecture 1 (glossery: see App. B, SG) 

- First law: conservation of energy 
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Summary Lecture 2 (second law and entropy) 

Second law: 
for any spontaneous process 
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Summary Lecture 2 (alternative energy functions) 
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Summary Lecture 3 (chemical equilibria) 

Second law→ 0
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Summary Lecture 3 (formation energies) 
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Summary Lecture 4 (activity) 

For perfect gas mixtures 
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Summary Lecture 4 (electrochemistry) 
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Summary Lecture 4 (electrochemistry) 
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Summary Lecture 5: solutions or mixtures 

Equilibrium between phases of component i in mixtures 
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Summary Lecture 5: colligative properties 

Osmosis 
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Lecture 6: Efficiency of processes 



1690/1698 

1784 

1803/1824 

1854/1862 

Heat   Work 

Steam engine 

Theory of efficiency 

Definition Entropy 
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Lecture 6: Efficiency of processes: History 



Thomas Savery 
1650-1715 

1698 

vacuum 
Steam-Water  

pump 
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Lecture 6: History: Convert heat to work 



Denis Papin 
1647-1712 1690 

Steam-Water pump 
Using a Piston 
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Lecture 6: History: Convert heat to work 



Thomas Newcomen 
1664-1729 

+ 
(Thomas Savery) 

The Proprietors of the Invention for Raising Water by Fire 

Efficiency: 2-5 % 
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Lecture 6: History: Convert heat to work 



James Watt 
1736-1819 

1784 
Steam engine 

efficiency: 25 % 
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Lecture 6: History: Convert heat to work 



Sadi Carnot 
1796-1832 

Thermodynamical model system:  heat engine 

  Is the amount of (useful) work limited? 
  Is there an alternative medium for steam? 
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Lecture 6: Steam engines: Convert heat to work 



Sadi Carnot 
1796-1832 

Thermodynamical model system:  heat engine 

(useful) 
work 

Heat 
(flow) 

Heat 
(flow) 

  Is the amount of (useful) work limited? 
  Is there an alternative medium for steam? 
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Lecture 6: Steam engines: Convert heat to work 



Sadi Carnot 
1796-1832 

(useful) 
work 

Heat 
(flow) 

Heat 
(flow) 

 TH and TC separated: no internal losses 
 Process steps: isotherms and adiabats 
 Idealized cycle: reversible process 
 Arbitrary medium: perfect gas 

  Is the amount of (useful) work limited? 
  Is there an alternative medium for steam? 
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Lecture 6: Steam engines: Carnot cycle 

Qin 

Qout 

Win 

Wout 



Sadi Carnot 
1796-1832 

(useful) 
work 

Heat 
(flow) 

Heat 
(flow) 

 TH and TC separated: no internal losses 
 Process steps: isotherms and adiabats 
 Idealized cycle: reversible process 
 Arbitrary medium: perfect gas 

  Is the amount of (useful) work limited? 
  Is there an alternative medium for steam? 
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Lecture 6: Steam engines: Carnot cycle 



Sadi Carnot 
1796-1832 

(useful) 
work 

Heat 
(flow) 

Heat 
(flow) 

Maximal efficiency 
depends on 

(TH -TC) 
 

Transformation of heat  
into work always  

involves losses 
(QC) 

 1824 
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Lecture 6: Steam engines: Carnot cycle 

 TH and TC separated: no internal losses 
 Process steps: isotherms and adiabats 
 Idealized cycle: reversible process 
 Arbitrary medium: perfect gas 

  Is the amount of (useful) work limited? 
  Is there an alternative medium for steam? 



Rudolf Clausius 
1822-1888 

WQU ddd 

Äquivalenzwert  
der Verwandlung R. Clausius Philosophical Magazine, 12 (1856) p.81 

1854 

First law: conservation of energy U 

Second law:  
transformations 

(processes) 
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Lecture 6: Fundamentals of thermodynamics 



Rudolf Clausius 
1822-1888 

WQU ddd 

0
d

  T

Q
S

1824 

Sadi Carnot 
1796-1832 

1850 

(useful) 
work 

Heat 
(flow) 

Heat 
(flow) 

1865 

First law: conservation of energy U 

Second  law: transformations 

For all reversible 
cyclic processes 

Maximal efficiency 
depends on 

(TH -TC) 

Transformation of heat  
into work always  

involves losses 
(QC) 
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Lecture 6: Fundamentals of thermodynamics 



The entropy (spontaneously) always increases 
until thermodynamic equilibrium is reached 

24 

Lecture 6: Modern classical thermodynamics 

WQU 
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
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Temperature 

First law: conservation of energy U 

Second  law: processes 
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Lecture 6: Modern classical thermodynamics 

WQU 

0
surtot

 SSS
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dQ
dS

rev



T

Q
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

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tot
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T

dQ
dSdS dQTdS 

for any spontaneous process: 

TdSdQ  Clausius inequality 
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Lecture 6: Modern classical thermodynamics 

TdSdQ 

Clausius inequality 

TdSdQ 
rev

TdSdQ 
irr

PdVTdSdVPdQdWdQdU 
ext

irr

rev. Process 
(mech. Work) 

irr. Process 
(mech. Work) 

any process 

U is a state function, so independent of the path 



Hermann von Helmholtz 
1821-1894 

An isothermal  reversible process delivers maximal (volume) work 

dWdQdU 

TSUA 
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Lecture 6: Fundamentals of thermodynamics 

 TSddUdA 

dWdA
T


Helmholtz free energy 

SdTdWTdSSdTdWdQdA 

TdSdQ 

0dW
for work done by the 

system on surroundings T
AW 

max



Josiah Gibbs 
1839-1903 
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Lecture 6: Fundamentals of thermodynamics 

dWdQdU 

TSHG 

 TSddHdG 

(Study guide: p.12) 

TdSdQ 

e
dWSdTdG

P


e,
dWdG

TP


TP
GW

,

max

e


e
dWSdTTdSdQdG

P


Isothermal isobaric reversible process delivers maximal (electric) work 



Qh 

Qc 

Win 

Wout 

Sadi Carnot 
(1796-1832) 

Carnot cycle 

Reversible processes 
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Lecture 6: Energy conversion: Carnot cycle 

Machine model: 
→ cyclic process 

Q→W 
for a steam engine 



Qh 

Qc 

Win 

Wout 

Carnot cycle 

Reversible processes 
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Machine model: 
→ cyclic process 

Q→W 
for a steam engine 
or power station 

Heat engine 

Lecture 6: Energy conversion: Carnot cycle 
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Qc 

Win 

Wout 

Carnot cycle 

Reversible processes 
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Machine model: 
→ cyclic process 

Q→W 
Heat engine 

Qh 

Qc 

Wout 

Win 

Carnot cycle 

Reversible processes 

Machine model: 
→ cyclic process 

W→Q 
for a refrigerator 

or heat pump 

Lecture 6: Energy conversion: Carnot cycle 
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Reversible 
model 
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Study Guide p. 19-22 

Lecture 6: Energy conversion: Carnot cycle 



Cyclic process 
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0 dU

U is state function 

  
ch

QQdQdW

  0
chinout  QQWWdW

Net work is done by the 
 system on surroundings 

(cf. exercise 4 for gasses) 

0
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QQ0,0
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 QQ and 

Lecture 6: Energy conversion: Carnot cycle 
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Cyclic process 
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0 dU

U is state function 

“equilibrium” process 
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Lecture 6: Energy conversion: Carnot cycle 
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Carnot cycle 

Efficiency of the process: 
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Lecture 6: Conversion efficiency: Carnot cycle 
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Power station 

Thermodynamic efficiency  
of a Carnot cycle 
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Lecture 6: Conversion efficiency: Carnot cycle 
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Reversible process 

Thermodynamic efficiency  
of a Carnot cycle 
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Irreversible process: 
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Lecture 6: Conversion efficiency: Carnot cycle 

 dWdA
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Inverse Carnot cycle 
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Machine model: 
→ cyclic process 

W→Q 
for a refrigerator 

or heat pump 

Reversible processes 

Lecture 6: Conversion efficiency: Carnot cycle 
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Inverse Carnot cycle 
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Lecture 6: Conversion efficiency: Carnot cycle 

Machine model: 
→ cyclic process 

W→Q 
for a refrigerator 

or heat pump 0
tot
S
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Inverse Carnot cycle 
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Machine model: 
→ cyclic process 

W→Q 
for a refrigerator 

or heat pump 

Reversible processes 

0
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Lecture 6: Conversion efficiency: Carnot cycle 

surroundings 

system 

Non-spontaneous process 

Freezer 
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Machine model: 
→ cyclic process 

W→Q 
for a refrigerator 

or heat pump 

Reversible processes 
0 dU

U is state function 
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Lecture 6: Conversion efficiency: Carnot cycle 

Work has to be done 
to run the process 
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Inverse Carnot cycle 

42 

Machine model: 
→ cyclic process 

W→Q 
for a refrigerator 

or heat pump 

Reversible processes 
Non spontaneous 
(forced) process 

c: performance 

Lecture 6: Conversion efficiency: Carnot cycle 

ch

c

ch

cc

TT

T

QQ

QQ







W
c

c

c

h

h

T

Q

T

Q


  0QQ
ch
W

Refrigerator: 
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Machine model: 
→ cyclic process 

W→Q 
for a refrigerator 

or heat pump 

Reversible processes 
Non spontaneous 
(forced) process 

c: performance 

Lecture 6: Conversion efficiency: Carnot cycle 
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Heat pump: 
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Lecture 6: Conversion efficiency: Batteries 
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Nernst equation 

)(Fe
3

aq
)(MnO

4
aq



)(Fe
2

aq
)(Mn

2
aq



)(H aq


)(OH
2

l
)(OH

2
l

Pt Pt 

Lecture 6: Conversion efficiency: Batteries 
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Nernst equation 
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Lecture 6: Conversion efficiency: Batteries 
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Nernst equation 
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Lecture 6: Conversion efficiency: Batteries 
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EMF:  
ElectroMotive Force 
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Summary Lecture 6: Efficiency of processes 
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Summary Lecture 6: Energy conv.: Carnot cycle 
Carnot cycle 
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Summary Lecture 6: Energy convers.: Batteries 

EMF:  
ElectroMotive Force 
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