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Literature

� Book: Physical Chemistry; P.W. Atkins; edition 11, 10, 9 or 8, Oxford University Press

� Study guide: will be made available online during the course

� All information will be available via the link in Brightspace or directly at
http://www.vsc.science.ru.nl/hugom/Thermo/Thermo.html

Aim

� Primary: Insight and skills

� Secondary: Knowledge

Organisation

� Lectures. During the lectures particularly the more difficult parts of the book will be emphasized.
Furthermore, extra subjects that are not dealt with in the book will be treated. If necessary, these
subjects will be incorporated in the study guide.
NB., thus the study guide is NOT a summary of ALL subjects.

� Tutorial Classes. Every week there will be one-hour Turorial Classes (Q&A in the schedule)
directly after the lunch break. The MS-tutors will then be present to answer questions and to help
in solving exercises. This will involve extra exercises rather than exercises from the Exercise Classes
(see next item).
The division into Tutorial Classes will be the same as in previous quarters; others are free to join.

Tutor Els Heijmen Martin Waals Ade Hoekstra Yvette van Rijckevorsel André Steenbergen
Location HG00.622 HG00.308 HG00.062 HG00.616 HG00.071
Capacity 50 28 63 50 63
Language Dutch Dutch English English English

� Exercise Classes. The exercises for both the Tutorial Classes and the Exercise Classes will be
distributed in the lectures; answers will be available online after the Exercise Classes.
The answers to the exercises do not have to be handed in. The level of the most difficult exercises
is comparable to the most difficult exercises in the book and reflects the level of the problems in
the exam. The five groups are the same as for the tutorials; others are free to join.

Location HG00.622 HG00.308/310 HG00.062 HG00.616 HG00.071
Stud.Ass. Niek Aarts Shen van Hassel Xiamei Klančnik Sanne Kusters Cas de Leeuw
Tutor Els Heijmen Martin Waals Ade Hoekstra Yvette van Rijckevorsel André Steenbergen

� Evaluation. The final evaluation will solely be determined by the exam, which consists of 4
exercises with 4 questions each. All 16 parts have equal weight for the final mark. An example
exam (without answers) will appear online at the end of the lectures series.
A list of formulae (Appendix C), without further comments will be provided at the exam.
Graphical calculators are NOT allowed during the exam (regular ones are).

� Video recordings. There will be no video recordings of the lectures (recordings of 2020/2021
will be put on Brightspace), primarily to promote the study efficiency and especially to promote
studying of the book. During the course only subjects will be dealt with that are either in the book
or in the study guide (see Table 1, 2 or 3).
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Subjects that will be treated

The time schedule for the various topics of Thermodynamics will become clear from the tables below for
the different editions of Atkins.

Day Sections (edition 11 Atkins) Subject
11/11 1A + 1C + 2A + 2B (+ 2E) + SG4-8 Gases, First Law of Thermodynamics, Reversible processes
18/11 3A + 3B + 3D1 + 3E2a-c + SG9-13 Entropy, Second Law of Thermodynamics

Free energy, Irreversible processes
25/11 5A1b-c + SG14-16 Chemical Potential, Activity

2C +3D2a + 6A Thermochemistry, Chemical Equilibria
02/12 6B T, P -dependence equilibria

6C1-3 + 6D(p.224) Electrochemistry, Standard Potential, Nernst-equation
09/12 5B + 5F1-2 + SG17-18 Mixtures, Colligative properties
16/12 3A3 + SG19-22 Second Law of Thermodynamics, Efficiency
23/12 3B + 3C + SG23-26 Statistical Thermodynamics, Boltzmann equation and entropy

Table 1: Overview of the topics treated from edition 11 of Atkins; SGi: page i of the study guide

Day Sections (edition 10 Atkins) Subject
11/11 1A + 1C + 2A + 2B (+ 2E) + SG4-8 Gases, First Law of Thermodynamics, Reversible processes
18/11 3A + 3C1 + 3D2a-c + SG9-13 Entropy, Second Law of Thermodynamics

Free energy, Irreversible processes
25/11 5A1b-c + SG14-16 Chemical Potential, Activity

2C +3C2a + 6A Thermochemistry, Chemical Equilibria
02/12 6B T, P -dependence equilibria

6C1-3 + 6D(p.267) Electrochemistry, Standard Potential, Nernst-equation
09/12 5B + 5E1-2 + SG17-18 Mixtures, Colligative properties
16/12 3A3 + SG19-22 Second Law of Thermodynamics, Efficiency
23/12 3B + 3C + SG23-26 Statistical Thermodynamics, Boltzmann equation and entropy

Table 2: Overview of the topics treated from edition 10 of Atkins; SGi: page i of the study guide

Day Sections (edition 9 Atkins) Subject
11/11 1.1 - 1.4 + 2.1 - 2.6 + SG4-8 Gases, First Law of Thermodynamics, Reversible processes
18/11 3.1 - 3.3a + 3.5 + 3.9 + SG9-13 Entropy, Second Law of Thermodynamics

Free energy, Irreversible processes
25/11 5.1b-c + SG14-16 Chemical Potential, Activity

2.7 - 2.9 + 3.6 + 6.1-6.2 Thermochemistry, Chemical Equilibria
02/12 6.3 - 6.4 T, P -dependence equilibria

6.5 - 6.8 Electrochemistry, Standard Potential, Nernst-equation
09/12 5.4-5.5 + 5.10-5.11 + SG17-18 Mixtures, Colligative properties
16/12 3.2 + SG19-22 Second Law of Thermodynamics, Efficiency
23/12 3.3 - 3.4 + SG23-26 Statistical Thermodynamics, Boltzmann equation and entropy

Table 3: Overview of the topics treated from edition 9 of Atkins; SGi: page i of study guide
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Recommendations regarding study attitude

The aim of the course has already been summarized on page 1 of the study guide :
Primary: insight and skills and secundary: knowledge
This means (some definitions will not be familiar yet):

� Insight is obtained by studying the material but particularly also by actively solving the problems
in the tutorials.
Insight into the backgrounds of the laws of Thermodynamics as well as the concepts that result
from these laws is necessary.
What do the symbols in a formula stand for?
Under what circumstances can I apply a certain formula?
How can I exploit a state function; is the process irreversible or reversible?
When can I choose an alternative path for a certain process?

� Skills are obtained by actively solving exercises and problems and reflecting back on the insights
gained:
How do I solve a problem?
Which paths are most suitable in a certain process?
How do I compose a total differential?
Can or should I calculate in moles?
Can I replace an irreversible process by a reversible process?

� Knowledge is less important.
The list of definitions from the beginning of the course containing concepts as system, bath, closed
system, etc. are part of prepared knowledge, but also things like ’the work done on the system is
positive’ or ’adiabatic means dQ = 0’, or ’S is a state function’.
Formulae are not part of prepared knowledge; do not spend any unnecessary energy in learning
formulae by heart, you will have all relevant formulas available during the exam!

At the exam a list of formulae (Appendix C) without further comments will be provided. In principle
this list will contain all relevant formulae necessary to complete the exercises. However, the list will also
contain formulae that are not necessary. Insight and skills will allow you to choose and apply the right
formulae.
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The classic perfect gas

We determine the internal energy of a classic perfect atomic gas. We already know that a perfect gas
obeys the (phenomenological) equation of state, or perfect gas law

PV = nRT = NkT (1)

in which V represents the volume, P the pressure, T the temperature, N the number of atoms, R the
gas constant, n the number of moles and k the Boltzmann constant.
The pressure of the gas is determined by collisions against the wall of the volume. Our perfect gas consists
of atoms with mass m which have a certain velocity distribution due to collisions. The classic approach
is that we assume the collisions are elastic as if the atoms were perfect billiard balls. The energy of such
a gas then only consists of kinetic energy, which is determined by the average velocity of the atoms. The
velocities of the individual atoms do change with every collision. However, the average velocity (of all
atoms) does not change at constant T , P and V . We call this average velocity v. For this average velocity
it holds that

v2 = v2x + v2y + v2z = 3v2x = 3v2y = 3v2z such that v2x = v2y = v2z =
1

3
v2, (2)

because the average kinetic energy will be equal in all three directions. The components vx, vy, vz of v
are averages as well. During a collision with the wall (assume that the wall is perpendicular to x̂) the

x

ŷ

^

p =mvP,V,T xx

p =−mvx x

Figure 1: Transfer of momentum for a perfect gas of atoms.

average transfer of momentum is in the x̂-direction according to figure 1

∆px = 2mvx (3)

Via Newton this transfer of momentum can be related to the force on the wall and thereby to the pressure.
For the pressure it holds that

P =
Fx
A

=
max
A

=
m

A

dvx
dt

=
1

A

dpx
dt

, (4)

in which Fx represents the average force on the wall, A the surface area of the wall, ax the acceleration
and px the momentum of the colliding particles.
The number of particles reaching the wall in a time interval dt is (ρ = N

V is the density of the gas)

1

2
ρAvxdt =

1

2

N

V
Avxdt. (5)
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The factor 1
2 results from the fact that on average only half of the particles has an average velocity vx

in the direction of the wall; the other half has this velocity in opposite direction. So this is the average
number of collisions with the wall in a time interval dt. The average transfer of momentum per time
interval dt for collisions with the wall is therefore, using equations (3) and (5):

dpx =
1

2

N

V
Avxdt · 2mvx = m

N

V
Av2xdt or

dpx
dt

= m
N

V
Av2x. (6)

The pressure on the wall then becomes (use equations (4) and (2))

P =
1

A

dpx
dt

= m
N

V
v2x = m

N

V

1

3
v2. (7)

This pressure is exactly the pressure of the gas we would measure with a pressure gauge attached to the
wall of the volume.
If we combine this expression with the perfect gas law (1) it follows that

nRT = PV = mN
1

3
v2. (8)

In order to determine the relationship between the internal energy and the temperature of a perfect gas
we need to distinguish between the case of a perfect gas consisting of atoms or molecules.
In the case of atoms, the internal energy of our classic (read perfect) gas is only determined by the average
kinetic energy of the N atoms, or (use equation (8))

U = N
1

2
mv2 =

3

2
PV =

3

2
nRT. (9)

Thus we see that U is an extensive quantity (scales with the size of the system) because of the factor n
and that U only depends on the temperature (or the product PV ).
This still holds for a perfect gas of molecules. However, the difference is that for molecules, apart from the
kinetic energy of the molecules as a whole, there is also kinetic energy in the rotations of the molecules
and kinetic as well as potential energy in the internal vibrations of the molecules. Depending on the
number of atoms per molecule and the shape of the molecule, these extra contributions will increase the
factor 3

2 in equation (9). We will not further elaborate on this increase.

We define a perfect gas of molecules as a gas that obeys the perfect gas law (equation of state)

PV = nRT = NkT. (10)

The fact that the internal energy for a given number of moles n only depends on T , or the product PV
is unique for the perfect gas.
A special case is an atomic perfect gas for which we have derived

PV = nRT and U =
3

2
nRT =

3

2
PV (atomic perfect gas). (11)

For a molecular perfect gas it holds that

PV = nRT and U = ncV T (molecular perfect gas). (12)

We will see that the factor 3
2R, or cV , is the molar heat capacity of a perfect gas of atoms, or molecules,

at constant volume.
All other systems, like non-perfect gases, fluids and solids, will always have a more complicated equation
of state and a more complicated expression for U , in which two of the three variables T , P and V play a
role for a given n. We will come back to this in more detail.
In the following we will consider general systems and perfect gases will only be mentioned as a special
case.
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The first law of thermodynamics, conservation of energy

We consider a system together with its surroundings that is isolated from the rest of the universe, as is
outlined in Figure 2. We define the heat Q that is absorbed by the system during a process, as well as
the work W that is done on the system during that process as positive.

dQ

dW
System

Surroundings

Figure 2: The total system of the system and its surroundings is isolated.

The (empirical) first law of thermodynamics tells us that for every process in an isolated total system
(system plus surroundings) it holds that

∆U = Q+W, (13)

in which U represents the internal energy of the system. This law turns out to hold for reversible processes
as well as irreversible processes. Alternative formulations are∮

dU = 0 (14)

and ”U is a state function”, meaning it is only determined by the state variables that unambiguously
determine the state of the system and not by the path taken during a process to reach that state.

The internal energy and heat capacity

An infinitesimal change of the internal energy in the case of only volume work for a reversible process
(possibly as alternative for an irreversible process) is given by

dU = dQ+ dW = dQ− PdV. (15)

We know that for an arbitrary system we can only choose two of the variables P , V , T as independent
variables in the case of a closed system (n is constant); the third one is determined via the equation of
state (the relationship between P , V , T and n for our system).
If we now consider the total differential of the internal energy for the independent variables T and V we
find (see Appendix A for an explanation of total differentials)

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV. (16)

We define the heat capacity at constant volume of an arbitrary system as

CV =

(
∂U

∂T

)
V

. (17)
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Note that at constant volume the volume work W = −
∫
PdV = 0 such that U = Q; hence the name

heat capacity.
For a perfect gas of atoms it follows with equation (9) (N is the number of atoms)

Cperfect,atomsV =
3

2
nR =

3

2
Nk, (18)

whereas for a perfect gas of molecules CperfectV will be larger. So in both cases the heat capacity is
constant, which is unique to perfect gases.
We define the specific heat capacity or specific heat as (m is the mass of the molecules)

cV =
CV
Nm

. (19)

This has as unit J/gK.
We define the molar heat capacity, with as unit J/molK, as

cV =
CV
n
. (20)

The heat capacity of an arbitrary system remains dependent on the temperature T and the pressure P
(or V ). Often we can assume that CV is constant within a certain range of T and P .

The enthalpy and heat capacity

An alternative energy function is the enthalpy which is defined by

H ≡ U + PV. (21)

Since U and V are extensive state functions and P is an intensive state function, it automatically holds
that H is an extensive state function. Naturally the unit is that of energy ([H] = J). Analogously to the
case of the internal energy it follows that (for the moment we only consider volume work)

dH = dU + d(PV ) = dQ− PdV + PdV + V dP = dQ+ V dP. (22)

Notice that at constant pressure the term V dP = 0, such that dHP = dQ.
Therefore we define the heat capacity at constant pressure of an arbitrary system as

CP =

(
∂H

∂T

)
P

. (23)

With equation (21) we find that

CP =

(
∂U

∂T

)
P

+

(
∂PV

∂T

)
P

=

(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

. (24)

If we heat a real gas at constant pressure then the volume will increase such that, in contrast to heating
at constant volume, apart from an increase in kinetic energy of the gas also volume work is being done.
For a non-perfect gas this results in complicated expressions.
However, if we heat a perfect gas at constant pressure the above mentioned expression simplifies because,
due to equation (9), the internal energy of a perfect gas only depends on the temperature. For a perfect
gas of atoms using equations (9) and (1), we find that the heat capacity at constant pressure is given by

Cperfect,atomsP =
3

2
nR+ P

(
∂V

∂T

)
P

=
3

2
nR+ P

(
∂ nRTP
∂T

)
P

=
3

2
nR+ nR =

5

2
nR, (25)

and cperfect,atomsP = 5
2R. For a perfect gas, therefore also the heat capacity at constant pressure is

independent of T .
So for a perfect gas it holds that

CperfectP = CperfectV + nR and cperfectP = cperfectV +R. (26)

This relationship remains valid for a perfect gas of molecules, since the term nR results from the equation
of state of a perfect gas (1), irrespective of whether this gas consists of atoms or molecules.
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Choice of a suitable energy state function

For both the energy state functions, internal energy and enthalpy, we have seen that there are restrictions
on certain state variables, depending on the actual process, that allow for a relatively simple expression
for the changes in the energy, even for an arbitrary system. Which energy function is most suitable to
describe a process thus depends on the circumstances of that process. At constant pressure the expression
for the enthalpy simplifies according to equation (22); at constant volume the equation for the internal
energy simplifies (equation (15)).

� If V is constant, so an isochoric process, we choose the internal energy U .

� If P is constant, so an isobaric process, we choose the enthalpy H.

These two energy state functions naturally have different values according to their definition.
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The second law of thermodynamics, spontaneous processes and
equilibria

In this chapter we will use the second law of thermodynamics to find the conditions necessary for processes
to run spontaneously towards thermodynamic equilibrium.
This chapter is a very brief summary of and supplementary to the entire chapter 3 of Atkins, the order
of the subjects deviating strongly from that in Atkins.

The entropy

The entropy of the system is defined as

dS ≡ dQrev

T
. (27)

With this definition S is a state function, in contrast to Q, so ∆S of a process is independent of the path
taken from the initial state of the process to the final state.
The first law of thermodynamics, as mentioned before, holds for any process, so for both reversible as well
as irreversible processes. In particular for irrversible processes the expression of volume work is defined
in a different form, leading to the following more general expression for the first law

dU ≡ dQ+ dW = dQ− PextdV. (28)

If we limit ourselves to a reversible process we find

dU ≡ dQ+ dW = dQ− PextdV = dQrev − PdV. (29)

With the definition (27) of entropy this becomes

dU = TdS − PdV. (30)

From the first law of thermodynamics we know that dU is independent of the path, such that for an
irreversible process we can also write

dU irr = TdS − PdV, (31)

in which we have to realize that the expressions on the right side describe the changes for an alternative
reversible path, even though we want to determine dU for an irreversible path. If for example dQirr < TdS
then this difference in energy will have to be compensated by the difference due to dW irr > −PdV .
Naturally, a similar consideration holds for other forms of work, which we will treat furtheron, such as
electrical work that is (ir)reversibly being done during a process.

The second law of thermodynamics

The second law of thermodynamics, which is an empirical law just like the first law, states that
for a spontaneous process in an isolated total system the total entropy increases (or is constant)

dStot = dS + dSsur ≥ 0, (32)

where Ssur represents the entropy of the surroundings (the reservoir, bath) and S the entropy of the
system. This total system is drawn schematically in Figure 2. Since the heat delivered by the surroundings
to the system has to be equal to the heat absorbed by the system we conclude that

dQ = −dQsur. (33)

Since we can choose the surroundings to behave as we like, for an irreversible process in the system we
choose the surroundings to absorb or release heat reversibly, so

dQ = −dQsur = −dQrevsur = −TsurdSsur. (34)
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If we now let the surroundings maintain the same temperature as the system, Tsur = T -after all the
surroundings is an idealized system- we find

dSsur = −dQ

T
, (35)

which when substituted in the second law of thermodynamics (32) results in

dS − dQ

T
≥ 0 (36)

With this expression we have found an alternative formulation of the second law of thermodynamics:
For a spontaneous process in an isolated total system

dS ≥ dQ

T
or dQ ≤ TdS or dQ ≤ dQrev. (37)

Equation (37) is known as the Clausius inequality.
Both formulations of the second law of thermodynamics generally hold for a spontaneous process in an
isolated total system. The Clausius inequality (37) as an alternative formulation of the second law of
thermodynamics has the benefit that it only contains quantities of the system.
The first formulation shows that the total entropy never decreases during a spontaneous process. This
means that in equilibrium, a situation in which no net spontaneous processes occur, it must hold that:

dStot = dS + dSenv = 0 (38)

This means that in equilibrium Stot always has reached its maximum value. We will show that a conse-
quence of this law is that different energy state functions have a minimum value, but only under certain
conditions of the state variables (P , T , etc.). We will describe the most general case for which the work
W consists of volume work and any other form of work W ′, such that

dW = −Pext.dV + dW ′, (39)

in which W ′ represents electrical work, friction work, chemical work, etc., depending on the system and
the process in question. We will still limit the discussion to a closed system.

Consequences for the internal energy

∆U = Q+W or dU = dQ+ dW = dQ− PextdV + dW ′. (40)

The Clausius inequality (37) gives

(dU)V,W ′ = dQ ≤ TdS. (41)

So for an iso-entropic and isochoric, spontaneous process without non-volume work we find

(dU)S,V,W ′ ≤ 0. (42)

So for a spontaneous process under those circumstances the internal energy always decreases. This is
actually a consequence of the second law of thermodynamics according to (32). Since dS = 0 according
to (32) we find dSsur ≥ 0, such that the surroundings must absorb heat from the system, and therefore
for the system Q ≤ 0. Because also dV = 0 this implies U has to decrease, which is exactly what is stated
by equation (42). In other words, equation (42) which only applies under the restrictions of constant S,
V and W ′ is a consequence of the second law according to (32).
The spontaneous process continues untill

(dU)S,V,W ′ = 0 (43)

and thermodynamic equilibrium is reached, where U is minimal, still at constant S, V and W ′.
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Consequences for the enthalpy

H ≡ U + PV. (44)

Analogous to the case of the internal energy it follows that (d(PV ) = PdV + V dP )

dH = dQ− PextdV + dW ′ + PdV + V dP. (45)

The condition P is constant implies Pext = P and in that case we find for a spontaneous process

(dH)P,W ′ = dQ ≤ TdS, (46)

such that for a spontaneous process it has to hold that

(dH)S,P,W ′ ≤ 0 (47)

and in equilibrium

(dH)S,P,W ′ = 0. (48)

Again there are restrictions for the state variables (now S, P and W ′) and these conditions for H are a
consequence of the second law according to (32).

The Helmholtz free energy

Since the prerequisite of dS = 0 is not always simple to realize, we introduce two alternative energy
functions, that avoid this problem; first the Helmholtz free energy.

A ≡ U − TS. (49)

A is an extensive state function again with [A] = J. Alternative names for A are Helmholtz function, free
energy and work function. Physicists often use the symbol F of F(ree energy).

dA = dQ− PextdV + dW ′ − TdS − SdT, (50)

such that for a spontaneous process, using the Clausius inequality, we find

(dA)V,W ′ = dQ− TdS − SdT ≤ TdS − TdS − SdT = −SdT. (51)

So for a spontaneous process

(dA)V,T,W ′ ≤ 0, (52)

and in equilibrium it holds that

(dA)V,T,W ′ = 0. (53)

The symbol A is derived from the German word Arbeit. A is the maximum (free) work that can be
done by the system during an isothermal process. Indeed, with the Clausius inequality it follows that
dU ≤ TdS + dW , so dW ≥ dU − TdS = (dA)T . The work done by the system is negative according to
the definition of work, so the maximum work done by the system during an isothermal process is

dWmax = dU − TdS, (54)

or

Wmax = (∆A)T . (55)
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The Gibbs free energy

The second alternative energy function is the Gibbs free energy,

G ≡ H − TS. (56)

G is an extensive state function again with [G] = J. Alternative names for G are Gibbs function and free
enthalpy.

dG = dH − TdS − SdT, (57)

such that for a spontaneous process (use equation (46))

(dG)P,W ′ = dQ− TdS − SdT ≤ −SdT. (58)

So for a spontaneous process

(dG)P,T,W ′ ≤ 0, (59)

and in equilibrium we find

(dG)P,T,W ′ = 0. (60)

At constant P and T , dG ≤ dW ′, such that G is the maximum non-volume work that can be done during
an isothermal, isobaric process.

W ′max = (∆G)P,T . (61)

Choice of a suitable energy state function

So for all four energy state functions there are restrictions for a number of state variables necessary to
use the second law for determining changes of the corresponding energy during a process in or out of
equilibrium. All these statements are a consequence of the formulation of the second law in terms of
entropy (32) or (37).
Therfore, the most suitable energy function to describe a process depends on the circumstances of that
process.

� If S and V are constant, so for an iso-entropic, isochoric process, we choose U .

� If S and P are constant, so for an iso-entropic, isobaric process, we choose H.

� If T and V are constant, so for an isothermal, isochoric process, we choose A.

� If T and P are constant, so for an isothermal, isobaric process, we choose G.

The four energy state functions naturally have different values according to their definition.
For an adiabatic process running in a thermally isolated system we have Q = 0, but only in the reversible
case this implies that also the entropy term TdS = TdQrev = 0. Iso-entropic processes are thus (practi-
cally) difficult to realize. This means that for processes in practice the internal energy U and the enthalpy
H often are not the best option.
During a chemical reaction in an open vessel it is often possible to keep the pressure Pext. and the tem-
perature T constant. Then G is the most appropriate state function.
For processes in constant volumes at constant temperature A is often the most suitable state function.
Of course, for every arbitrary process all four energy functions remain state functions. However, ’easy’
statements about changes of the corresponding energy during a process in or out of equilibrium are lim-
ited by the abovementioned restrictions and these usually determine the choice.

The equilibrium criteria should be interpreted as follows. As an example we consider

(dG)P,T,W ′ = 0. (62)

This equation tells us that in equilibrium the Gibbs free energy is constant and minimal (from equation
(59)) during an isobaric, isothermal process without non-volume work. So for such a process G will not
change if during that process the other variables, V and S, change. The value of G, however, remains
a function of T and P . In other words, for every other couple of values of T and P , G will take on a
different equilibrium value that does not change as a function of V and S.
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Spontaneous processes

When does a process proceed spontaneously? We will consider this for situations in which the pressure
and the temperature are constant, so dT = dP = 0. This appears to be a very strong restriction since
the equation of state suggests that then also dV = 0, but out of equilibrium the system does not obey
the equation of state.
For constant P and T the Gibbs free energy is the most suitable choice and equation (59) then gives

(dG)P,T,W ′ = (dH)P,T,W ′ − T (dS)P,T,W ′ ≤ 0. (63)

In terms of the enthalpy and entropy change as a consequence of the process this becomes

∆H − T∆S ≤ 0, (64)

in which P and T are constant.
Now we can distinguish between exothermic (heat producing) and endothermic (heat absorbing) processes
(use dH|P,W ′ = dQ):

Exothermic (∆H < 0)

{
∆S > 0 spontaneous,

∆S < 0 spontaneous if T |∆S| ≤ |∆H|,
(65)

Endothermic (∆H > 0)

{
∆S > 0 spontaneous if T∆S ≥ ∆H,

∆S < 0 never spontaneous.
(66)

We find a special case for equilibrium situations, for which

∆G = ∆H − T∆S = 0 or ∆H = T∆S. (67)

This is a situation that occurs for example at the melting or boiling point of substances. For instance at
the melting point of a solid, where the solid phase and the melt are in equilibrium, we find (T = Tfus):

∆fusG = 0 such that ∆Hfus − Tfus∆fusS = 0 or ∆fusH = Tfus∆fusS. (68)

Similarly at the boiling point of the liquid we find

∆vapG = 0 such that ∆Hvap − Tvap∆vapS = 0 or ∆vapH = Tvap∆vapS. (69)
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The chemical potential

As final thermodynamic quantity we introduce the chemical potential µ. In principle the chemical po-
tential is meant to describe a change in the free energy of an open system, i.e. a system in which the
amount of matter is not constant. So in open systems particles can leave or enter the system. Examples
are inhomogeneous systems that are composed of two or more systems, such as a solid in contact with
its liquid or gas, or two systems separated by a semi-permeable membrane. Also closed systems in which
chemical reactions proceed can be interpreted as open systems because the amounts of the reactants and
products change during the reaction process.
The chemical potential describes how the Gibbs free energy of the system changes if the number of (mol
of) particles changes and all other variables remain constant, or in formula

µ ≡
(
∂G

∂n

)
P,T

. (70)

Since we now have more variables the total differential (see Appendix A and especially (A-5)) becomes
somewhat more complicated. It still holds that for every system there is a relationship between the state
variables of that system, namely the equation of state. For G we usually take P , T as free variables, and
for an open system also n. The total differential for the Gibbs free energy then becomes

dG =

(
∂G

∂P

)
T,n

dP +

(
∂G

∂T

)
P,n

dT +

(
∂G

∂n

)
T,P

dn, (71)

and the fourth variable V is again determined by the equation of state and the values for P , T and n.
This expression describes G for a homogeneous system with one type of particles (e.g. pure water). For
such a pure substance G increases linearly with the number of moles n, such that G = nGm, in which
Gm is the molar Gibbs free energy. Equation (70) then implies that µ = Gm.
For impure substances, in other words systems with multiple types of particles that mix to a certain
extent, we need an index to label these types. If the (molar) quantities of those species ni are variable
then also the Gibbs free energy of the entire system becomes a function of these quantities

G = G(n1, n2, n3, · · ·, V, T, P ). (72)

If we choose again P , T and all ni as variables, in which V is determined by the equation of state, we
find as total differential for G

dG =

(
∂G

∂P

)
T,ni

dP +

(
∂G

∂T

)
P,ni

dT +
∑
i

(
∂G

∂ni

)
T,P,nj 6=i

dni, (73)

where the sum is over all types of particles.
Meanwhile we are also able to identify the partial derivatives. For closed systems we already know
the expression dG = V dP − SdT , so we can identify these derivatives with state variables or other
thermodynamical functions. For open systems (with multiple types of particles) we define the chemical
potential of species i as

µi ≡
(
∂G

∂ni

)
T,P,nj 6=i

. (74)

We can identify the two other partial derivatives as

V =

(
∂G

∂P

)
T,ni

and S = −
(
∂G

∂T

)
P,ni

, (75)

or

dG = V dP − SdT +
∑
i

µidni. (76)
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Thus the chemical potential of species i describes the change of the Gibbs free energy of the entire system
if we change the (molar) amount ni of species i. The fact that this is a potential we can understand
by making a comparison with the concept potential from electrochemistry. The electrical potential on
an electrode describes the amount of work it takes to change the (molar) amount of charge on that
electrode. Similarly, the chemical potential µi describes the amount of work that has to be done on the
system (increase of G) to increase the (molar) amount of particles (of species i) in the system.
We have already seen earlier that we use the Gibbs free energy preferably for processes in which P and
T are constant. Equation (76) then gives

dG =
∑
i

µidni (P, T constant). (77)

We have also seen that the Gibbs free energy at constant temperature and pressure describes the maximum
non-volume work (see equation (61)). With (77) it then follows that

dW ′max =
∑
i

µidni (P, T constant). (78)

This maximum value is reached for a reversible process. As an example we consider an electrochemical
cell. In that case the dni describe the changes of the (molar) amounts of particles (whether charged or
not) and

∑
i µidni is the maximum electrochemical (electrical) work. We will come back to this issue

when dealing with (electro)chemical equilibria.

Chemical potential in an arbitrary system; activity

For a mixture of gases the total pressure is equal to the sum of the partial pressures Pi according to

P =
∑
i

Pi with
Pi
P
≡ ni

n
= xi, the mole fraction of component i (Dalton’s law). (79)

For a mixture of perfect gases we can consider every component Ci as independent and thus pure, with
as chemical potential at given T (pure so dµ = dGm = VmdP − SmdT ):

µi(Pi) =
Gi(Pi)

ni
= Gm,i(Pi) = G�

m,i +

∫ Pi

P�

VmdP = µ�
i +RT

∫ Pi

P�

dP

P
= µ�

i +RT ln
Pi
P�

, (80)

in which the so-called standard state, with P� = 1 bar, is chosen as a reference.
To keep an analogous expression for an arbitrary mixture of substances, in any phase, the concepts
activity ai and activity coefficient γi of component Ci are introduced according to

µi ≡ µ�
i +RT ln ai ≡ µ�

i +RT ln γixi with xi ≡
ni
n

, the mole fraction of component i. (81)

With this the standard state of the components Ci is determined by the, in many cases fictive, pure
state of those components at P = P� and ai = 1. The same conditions hold for the biological standard
state (⊕; or ◦

′
) with the only difference that for the hydrogen ions pH⊕ = − log a⊕H+(aq) = 7 is chosen as

standard state, instead of pH� = − log a�H+(aq) = 0, for the thermodynamic standard state.

In summary, the standard state � of component i is given by

�


i is a pure component; a sometimes fictive situation

ai = 1

P = P� = 1 bar; for the (fictively) pure component,

(82)

while the activity ai of component i in the mixture is defined as (see also exercise classes 3)

ai =


Pi/P

� for a perfect gas in the mixture

≈ 1 for a pure liquid or the solvent in a very diluted solution

≈ 1 for a pure solid or the solid in a very diluted solid solution

µi ≡ µ�
i +RT ln ai ≡ µ�

i +RT ln γixi for all other situations.

(83)
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Importance of the chemical potential and equilibrium

If we now consider the Gibbs free energy of an arbitrary mixture then we can easily find this energy by
choosing a clever path at constant T and P . If we prepare the mixture starting from the unmixed state
to the mixed state, while keeping the composition (mixing ratio) equal to that of the final state at all
times, then we have to find the same change for G as for an arbitrary way of mixing, since G is a state
function, so is independent of the path taken.

G|P,T =

∫ nA

0

µAdnA +

∫ nB

0

µBdnB = µA

∫ nA

0

dnA + µB

∫ nB

0

dnB = nAµA + nBµB , (84)

where for the second set of integrals we used that µA and µB do not change if the mixing ratio in the
system remains constant and only the total amount of mixture increases.
Thus equation (84) holds for an arbitrary mixture.

An important application of the concept chemical potential is found for equilibrium situations between
two phases α and β; for example a liquid (mixture) phase and solid (mixture) phase, which are in mutual
equilibrium. In equilibrium, at constant pressure and temperature, for each species (component) the
total number of particles has to be constant for the total system, such that the net flux between the two
phases is zero for each species, so dnαi = −dnβi .
Using equation (60) and realizing that if there is no additional work (dW ′ = 0)

0 = dG|P,T,W ′ = µαi dnαi + µβi dnβi = µαi dnαi + µβi (−dnαi ) = (µαi − µ
β
i )dnαi , (85)

and therefore in equilibrium between two (or more) phases α and β at given T and P , we find

µαi = µβi for all components i in the phase mixtures. (86)

16



Mixtures of gases, liquids and solutions

The following can be considered as an alternative approach of the material discussed in the paragraphs
5A.2 and 5B.1 in Atkins (edition 10 or 11); applications such as osmosis, freezing-point depression and
boiling-point elevation can be found in paragraph 5B.2.
We use the equilibrium equation (86) in terms of the chemical potentials of the components to describe the
process of dissolution and mixing. We consider a binary mixture of components A and B, at temperature
T and initially both at constant pressure P .

The general case

In the initial (unmixed case) we have pure phases for A and B with total Gibbs free energy G. We
use ∗ as superscript to denote pure substances while µ�

i by definition, equation (82), refers to the pure
component. Using equation (84) we find

Gno mix = nAµA + nBµB = nA
(
µ�
A +RT ln a∗A

)
+ nB

(
µ�
B +RT ln a∗B

)
. (87)

After mixing we obtain

Gmix = nAµA + nBµB = nA
(
µ�
A +RT ln aA

)
+ nB

(
µ�
B +RT ln aB

)
. (88)

So for the Gibbs free energy of mixing, ∆mixG, we find (use xi = ni/n)

∆mixG = Gmix −Gno mix = nART ln
aA
a∗A

+ nBRT ln
aB
a∗B

= nRT

(
xA ln

aA
a∗A

+ xB ln
aB
a∗B

)
. (89)

A mixture of perfect gases

For a mixture of perfect gases we can substitute a∗i = P/P� initially and ai = Pi/P
� finally, resulting in

∆mixG = nRT

(
xA ln

PA
P

+ xB ln
PB
P

)
= nRT (xA lnxA + xB lnxB) , (90)

where we used Dalton’s law, equation (79).

A mixture of liquids

For a mixture of liquids we can substitute a∗i ≈ 1 initially in equation (89), resulting in

∆mixG = nRT

(
xA ln

aA
a∗A

+ xB ln
aB
a∗B

)
= nRT (xA ln aA + xB ln aB) , (91)

an equation describing the so-called non-ideal interaction between the molecules in a liquid mixture. It
is convenient to describe this mixture in terms of a so-called ideal mixture of liquids, comparable to the
situation of a perfect gases mixture, equation (90), by using the earlier mentioned activity coefficients γi,
defined by ai ≡ γixi, as

∆mixG = nRT (xA ln γAxA + xB ln γBxB) = nRT (xA lnxA + xB lnxB) +nRT (xA ln γA + xB ln γB)

(92)

Ideal solutions

A special case of so-called idealy mixing liquids is described by Raoult’s law, for which both acitvity
coefficients are (nearly) equal to unity, or γA ≈ γB ≈ 1, resulting in

∆mixG
ideal = nRT (xA lnxA + xB lnxB) . (93)
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In other words, ideal solutions have the same mixing behaviour as perfect gases. Raoult’s law boils dawn
to the vapour pressure of both components for the liquid mixture being proportional to their mole fraction
in the liquid, according to

P gi = xliP
g,∗
i , or

Pi
P ∗i

= xi, (94)

where l and g represent the liquid and gas phase respectively.
For non-ideal solutions we can often still use such a relationship for (only) the solvent A in very diluted
solutions of B in A (nB << nA).
For the general case, however, we will have to replace xi by the activity ai.

Ideal mixing liquids and gases

For ideal mixing gases and liquids (following Raoult’s law) we therefore have

∆mixG
ideal = nRT (xA lnxA + xB lnxB) , with xi =

ni
nA + nB

. (95)

When we combine this with the definition of G, we find that at constant T

∆mixG = ∆mixH − T∆mixS, (96)

such that

∆mixH = 0, (97)

∆mixS = −nR (xA lnxA + xB lnxB) . (98)

Thus the mixing process of a system showing ideal mixing is completely determined by the change in
entropy. For such an ideal mixing system the interactions between the components A and B is equal to (or
at least comparable to) the mutual interactions between the components A and the mutual interactions
between the components B.
Note that there is no heat of mixing, resulting in dQ = 0, such that ∆Ssur = 0 and therefore

∆Stot = ∆S = ∆mixS = −nR (xA lnxA + xB lnxB) = 0 for 0 ≤ xA ≤ 1. (99)

in other words, ideal mixtures always mix spontaneously.
Also note that ∆mixG is negative for all values of xA (see figure 3). The second law of thermody-
namics tells us once more that, at constant pressure and temperature, such a system will always mix
spontaneously for any chosen molfraction, xA.
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Figure 3: The change in Gibbs free energy resulting from the mixing of a binary system showing ideal
solution behaviour is always negative.
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Efficiency of thermodynamic processes

Historically, thermodynamics evolved from the need for a ’heat machine’ as efficiently as possible, partic-
ularly the steam engine, in which the combustion heat of coal is transferred into mechanical work. Later
other machines and processes were developed, such as power stations, jet engines, batteries, fuel cells,
but also (bio)chemical processes.
As the efficiency of such processes is of great importance, we will take a closer look at efficiency for a
couple of processes.

Heat engine

A ’heat engine’ absorbs a certain amount of heat at a high temperature Th, partially transfers this into
some form of work W and conveys the rest of the heat to a low temperature reservoir at Tc. The process
has to be cyclic so that we can use the machine in a continuous process. An idealized model of such a
cyclic process is the Carnot cycle which models a reversible cyclic process consisting of two isotherms
and two adiabates, as is outlined in figure 4. Since the internal energy is conserved in any cyclic process

P
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T
h

T
c

Bd
Q

 =
 0

d
Q

 =
 0
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D

A

Figure 4: The Carnot-cycle in a P -V diagram. The Carnot cycle is a reversible process, which can run
in either direction.

(∆U = 0) and heat exchange only occurs at the isotherms, the work is given by (we use absolute values
because then the expressions are valid for both directions of the process)

|W | = |Qh| − |Qc| . (100)

We use the second law of thermodynamics to show that the heat engine runs as long as we withdraw an
amount of heat Qh from the high temperature resorvoir at Th and dump a smaller amount of heat Qc in
the reservoir at a lower temperature Tc. For that we have to show that ∆Stot = ∆S + ∆Ssur ≥ 0.
The system entropy, S, is a state function, so

∮
dS = 0 for any cyclic process (Note that Atkins uses the

Carnot cycle to show that S is a state function; here we simply use this result).
The Carnot engine runs reversibly, so the change in entropy of the system in each cycle is given by

0 =

∮
dS = ∆S =

Qrevh
Th

+
Qrevc
Tc

=
Qh
Th

+
Qc
Tc
, (101)
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So, for any Carnot cycle the following expression is valid

Qh
Qc

= −Th
Tc
. (102)

Analogously, the change of entropy of the surroundings is∮
dSsur = ∆Ssur = −Qh

Th
− Qc
Tc
. (103)

Using equation (102), we find ∆Ssur = 0, such that

∆Stot = ∆S + ∆Ssur = 0. (104)

So the total entropy change equals zero and the second law of thermodynamics tells us that the process
is in equilibrium. This holds for any reversible process, so also for the Carnot cycle. If we would stop
supplying heat from an external source to maintain the high temperature reservoir at Th, the engine will
slow down and finally stop.
The thermodynamic efficiency of such an engine is defined as the useful work divided by the heat that is
absorbed (from the external energy source) at the high temperature,

η ≡ |W |
|Qh|

=
|Qh| − |Qc|
|Qh|

= 1− |Qc|
|Qh|

, (105)

for a Carnot-cycle. If we combine equations (105) and (102) we find

η = 1− Tc
Th
. (106)

If we use this expression for the coal-fueled power station in Nijmegen (which was shut down in December
2015) that operated at a steam temperature of approximately 500 ◦C (at high pressure) and at a waste
heat temperature of about 100 ◦C, we find an efficiency of 50 %. In reality such a power station does not
operate reversibly and the actual thermodynamic efficiency is somewhere between 30 and 35 %. From
(106) we conclude that the efficiency approaches 100 % if we let Tc approach 0 K or Th approach ∞.
However, there are practical limits to Tc and Th, such that the efficiency will never be 100 %. Of course we
can use the waste heat for useful purposes (other than dumping it in the river). Therefore the definition
of efficiency depends on the point of view. Equation (105) only considers the thermodynamic cycle of
the partial transformation of heat into work.

Refridgerator

A refridgerator is actually a reversed heat engine. We will have a look into this engine, again using the
Carnot-cycle as a model. There is a difference, however, in the choice of the system. We withdraw an
amount of heat Qc from the system to be cooled at a temperature Tc. If this withdrawal process proceeds
reversibly the entropy of the system will decrease according to

∆S =
Qrevc
Tc

=
Qc
Tc

< 0. (107)

Since for a refridgerator we dump an amount of heat Qh at a higher temperature Th in the surroundings
the entropy of the surroundings increases, so

∆Ssur =
Qsurh

Th
= −Qh

Th
> 0. (108)

Therefore, the total entropy change is (we use absolute values again)

∆Stot = ∆S + ∆Ssur =
|Qh|
Th
− |Qc|

Tc
. (109)
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Even if the Carnot-engine does not do any work, in which case Qh = −Qc since ∆Ucycle =
∮

dU = 0
for any cyclic process, and therefore ∆Stot < 0, since Tc < Th. Thus the refridgerator will not run
spontaneously (second law of thermodynamics). We have to put energy into the refridgerator in the form
of work to force the process to run. The energy involved in this work is dumped in the surroundings as
extra heat; in other words |Qh| = |Qc|+ |W |. The efficiency of the refridgerator is then given by

η =
|Qc|
|W |

=
|Qc|

|Qh| − |Qc|
. (110)

Equation (110) represents the maximum efficiency (the minimal work) achievable for this process as it is
performed reversibly. Using equation (102) for a Carnot cycle again, we find for the maximum efficiency

η =
Tc

Th − Tc
. (111)

If we would keep the cycle running like this, assuming no leakage of heat into the system (cold chamber),
its temperature Tc, and with that the efficiency, would keep on decreasing, demanding an increasing
amount of work for the same withdrawal of heat Q2.
The concept efficiency is a bit strange here since according to equation (111) the efficiency ηrev > 1 as
long as Th − Tc < Tc, so as long as Th < 2Tc. The efficiency of a common refridgerator, if it were run
reversibly, would be approximately 900 %.
Also here the definition of efficiency depends on the point of view. Qc is a reasonable parameter in
all cooling processes. In contrast, W is doubtful. Apart from losses that occur while doing work as a
consequence of heat dissipation in the engine and the pump, one could use the heat that is dumped in the
surroundings for other useful processes. Using the waste heat for other purposes generally also lowers Th
and therefore increases the efficiency. For refridgerators the efficiency η is often called the performance.

Batteries

Battery technology has developed in recent years very fast due to the need for efficient rechargeable
batteries with high energy density, that is, small batteries with a large capacity and long life even after
many (say 1000) repeated recharging cycles. Their use is in mobile electrical equipment and electric
vehicles as well as in energy storage for renewable energy sources like solar panels and wind mills, which
cannot provide a constant electrical power.
We will have a look at the efficiency of such rechargeable batteries. In figure 5 the situation is drawn
schematically. The electromotive force, EEMF is the maximum cell voltage the battery can deliver in

R iR i

EEMF

RL

R i RL

EEMF

E
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Battery/system Battery/system

I
termE

Figure 5: The battery is the system; if there is no external load resistance RL, then the terminal voltage
is equal to the maximum voltage of the battery EEMF ; if a resistance RL is connected the terminal
voltage drops with an amount of IRi to a value of Eterm = EEMF − Ei.

case there is no load resistance RL connected to its terminals. The electromotive force can be determined
using the Nernst equation

−∆rG

νF
= EEMF = Ecell = E� − RT

νF
lnQ, (112)
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where ∆rG is the reaction gibbs free energy of the chemical reaction driving the battery. A fully charged
cell will have the maximum Ecell, while a fully discharged (empty) battery will have Ecell = 0. If a load
resistance is connected the current I is determined by

I =
Ecell
Rtot

=
Ecell

Ri +RL
. (113)

In such a situation electrical work, W e, will be done on both the resistances RL and Ri. If we assume
these resistances to be pure ohmic resistances, Ohm’s law will apply, leading to (use equation (113))

Ei = IRi = Ecell
Ri

Ri +RL
and EL = IRL = Ecell

RL
Ri +RL

. (114)

The electrical work done on these resistances will be fully converted to a heat Q dissipated in the
resistances (so-called Joule heating) according to

W e = Q =

∫
P e(t)dt, (115)

where the time dependence of the electrical power P e(t) is explicitly mentioned. This time dependence
will be in Ecell(t), because the the cell voltage will decrease in time as well as in the internal resistance
Ri(t) because Ri will depend on the current I(t). Ri(t) will be time dependent due to the charges that
will accumulate across the membrane separating the electrolytes in the two half cells of the battery. This
accumulation is a result of the limited flow capacity of ions through it.
The heat Qi dissipated in Ri can be considered as a loss of energy, while the heat QL dissipated in RL
is useful energy. Their values follow from (use Ohm’s law)

Qi =

∫
P ei (t)dt =

∫
I(t)Ei(t)dt =

∫
E2
i (t)

Ri(t)
dt and QL =

∫
P eL(t)dt =

∫
E2
L(t)

RL
dt (116)

The time dependence will be a subject in exercise 31 of exercise class 8. For the time being we will
consider the case that the load of the cell will be shortly enough to assume that EEMF = Ecell can be
considered as being constant in a time ∆t, leading to

Qi =

∫
E2
i

Ri
dt =

E2
i

Ri
∆t and QL =

∫
E2
L

RL
dt =

E2
L

RL
∆t. (117)

If we put the time ∆t equal to the time elapse per mol of the electrochemical reaction progression, that
is ∆t = νF

I , we can determine the efficiency of the loaded battery as (the useful electrical work is only
done on the load resistance and ∆rG is a molar quantity)

η =
|W e

useful|
|∆rG|

=
|QL|
|∆rG|

=

E2
L

RL

νF
|I|

νF |Ecell|
=

E2
L

RL|I||Ecell|
. (118)

Using equation (114) this result becomes

η =

(
|Ecell| RL

Ri+RL

)2
|Ecell| RL

Ri+RL
|Ecell|

=
RL

Ri +RL
. (119)

This result shows that even if we load the electrochemical cell reversibly the efficiency will be less than
100 %. The internal resistance, however, will be considerably smaller when the current is very small due
to the smaller build-up of charges across the membrane separating the two half cells.
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Statistical thermodynamics

One of the shortcomings of (classical) thermodynamics is that it can only describe macroscopic systems of
many particles without the details of the microscopic properties of the particles coming into the picture.
This makes thermodynamics a very powerful but also an abstract and in some sense an unsatisfactory
construction. Statistical thermodynamics takes away this dissatisfaction by providing a foundation for
thermodynamics based on the microscopic properties of the particles. We will briefly describe the essen-
tials of statistical thermodynamics without giving a solid derivation. Such a fundamental construction is
given in the optional course Statistical Thermodynamics.

Boltzmann distribution

Statistical thermodynamics assumes a system of particles of which all energy levels are known. These
levels describe all the states of the particles in the system, such as translational, rotational and vibrational
states with corresponding energies εi, where i labels a state. These energies are found by quantum
mechanical calculations or by experimental spectroscopic measurements. Statistical thermodynamics
then assumes that the chance of finding the particles (molecules) of the system in a certain energy state
is only determined by the value of that energy and the temperature of the entire system. Eventually
the temperature of the system is determined by the average occupation of all particles over the entire
spectrum, i.e. over all energy states. This probability distribution is called the Boltzmann distribution
and in formula is given by (we choose ε0 = 0, by shifting all energy levels accordingly)

ni
N

=
exp

(
− εi
kT

)∑
j exp

(
− εj
kT

) , (120)

where N is the number of molecules in the system and ni

N is the fraction of molecules that, averaged over
all particles and time, are in a quantum state with energy εi. Thus for low temperatures with kT << εi
the number of particles in the state with energy εi is very small, whereas for higher temperatures the
fraction relatively increases. The denominator in this equation, for which the sum runs over all possible
energy states, ensures that the probability distribution is normalized; if we sum the fraction over all
energy states we find∑

i

ni
N

=
∑
i

exp
(
− εi
kT

)∑
j exp

(
− εj
kT

) =

∑
i exp

(
− εi
kT

)∑
j exp

(
− εj
kT

) = 1, (121)

which means nothing else than that all particles are in a state. This can be compared to rolling dice; the
chance of an arbitrary number of eyes (1-6) is always equal to 1. That normalization of the Boltzmann
distribution has a special name, the partition function q.

q ≡
∑
i

exp
(
− εi
kT

)
. (122)

The term kT can be interpreted as the thermal energy of the system. This is usually denoted by the
symbol β = 1

kT . The Boltzmann distribution plays an important role in statistical thermodynamics. For
example the average value < X > of an arbitrary quantity X of the entire system at a certain temperature
can be determined from this probability distribution using

< X >= N < x >= N
∑
i

xi
ni
N

= N

∑
i xi exp (−βεi)

q
, (123)

where xi is the value of that quantity for a (molecular) state i with energy εi. As an example consider
the average total energy < U > of the system:

< U >= N

∑
i εi exp (−βεi)

q
= −N

q

(
dq

dβ

)
. (124)

The partition function q can be calculated if all energy levels εi are known. In a similar way we can
calculate all thermodynamic functions such as G, A, H, etc. if we know the microscopic energy levels.
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Statistical thermodynamic entropy

The Boltzmann distribution (equation (120)) can also be used to find an expression for the entropy. The
Boltzmann definition of entropy is:

S ≡ k lnW. (125)

In this expression W is the number of micro states of the system, or in other words, the number of
possibilities to divide the particles (molecules) of the system over all energy states εi at temperature T ,
given the Boltzmann distribution at that temperature.
From this definition of entropy it directly follows that the entropy increases with increasing temperature
since then, according to the Boltzmann distribution, more energy levels can be occupied by the particles
and therefore there are more possibilities to divide the particles over the levels.
In the limit T → 0 the number of micro states for the system approaches W = 1 since then the system
will be in a crystalline state in which all atoms are motionless and thus there will only be a single micro
state left. With the Boltzmann definition of the entropy (equation (125)) it follows that

S(T = 0) = k ln 1 = 0, (126)

which is in agreement with the third law of classical thermodynamics (section 3B.2 of Atkins).
We can also understand the specific mathematical form of the Boltzmann entropy, the logarithm of W .
To this end, consider a system consisting of two subsystems with numbers of micro states W1 and W2,
respectively. The total system will then have many more micro states, namely

W = W1W2, (127)

as long as W1 and W2 are independent. The entropy is an extensive parameter (according to the classical
thermodynamics definition), so that we expect this to hold also for the statistical definition, or S = S1+S2.
This expectation is fulfilled, since

S1 + S2 = k lnW1 + k lnW2 = k lnW1W2 = k lnW = S. (128)

The Boltzmann constant k takes care of the units and numerical value of S. Equation (127) only holds
in the case that there is no interaction between the subsystems that changes the occupation chances of
the subsystems as a consequence of the combination of these subsystems into one system. The simplest
example of two subsystems that are independent in that way, consists of two volumes filled with perfect
gases.

Is entropy a measure for disorder?

Although it appears attractive to associate the concept entropy with disorder, we will show that this is not
entirely correct. In the end statistical thermodynamics will provide the correct basis for the interpretation
of entropy.
As a counter example for the association of entropy with disorder we start again where we left off, i.e.
in classical thermodynamics. We limit ourselves to the simplest system we know, the perfect gas. We
consider equal amounts of two gases A and B. For mixtures of two perfect gases and for ideal solutions
in general we have derived that the entropy of mixing is given by equation (97)

∆mixS = −nR(xA lnxA + xB lnxB). (129)

We compare two processes for these gases and a third process for a pure perfect gas A.
First we mix A and B reversibly, more precisely isothermally and isochorically. We will do this with a very
clever experiment, but which is also difficult to realize, a so-called Gedankenexperiment, as is clarified
in Figure 6. Initially A and B are separated in two volumes V . The left semipermeable membrane is
mechanically coupled to the piston, such that for both gases at every moment the volume is constant and
equal to V . As a consequence of this the mechanical work during the process is equal to zero, because
dW = −PextdV = 0 for both gases. Since the process proceeds isothermally and since for perfect gases
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A B A B A + B

A

+

B

Figure 6: Isothermal reversible mixing of two perfect gases A and B. The process is done isochorically
because the left membrane is permeable to A only, whereas the right membrane is only permeable to B.

the internal energy only depends on the temperature, it also holds that dU = 0 for both gases. With
the first law of thermodynamics it then follows that dQA = dQB = 0 and, since we conduct the process
reversibly, it follows that dSA = dSB = 0. Thus we have found a process in which mixing of two gases,
which we can associate with an increase in disorder, does not result in an entropy change.
For the second process we mix A and B, again isothermally and reversibly, but now no longer isochorically
(see Figure 7). The volume will eventually become twice as large for both gases. The process is isothermal,

so QA = −
∫

dWA =
∫
PAdVA = nART ln

V f
A

V i
A

= nART ln 2 and analogously for B. Thus the entropy

A B A B A + BA+ B

Figure 7: Isothermal mixing of two perfect gases A and B. The left membrane is again semipermeable
to A, whereas the right membrane is only permeable to B. The process is conducted reversibly.

change is ∆S = (nA + nB)R ln 2. 1

If we compare the two experiments, we see that the entropy does not increase as a consequence of solely
mixing the gases A and B, but does increase if the mixture of gases occupies a larger volume.
This volume dependence of entropy is also found in the third experiment in which we irreversibly and
isothermally expand a gas to a twice as large a volume in vacuum (Pext = 0), so without mixing, as
outlined in Figure 8. Isothermally, so dT = 0, such that for a perfect gas it follows again that dU = 0

P   = 0extP   = 0ext

V2

A A A

V

Figure 8: Isothermal, irreversible expansion of a perfect gas A in vacuum, in which the volume is doubled.
Initially the process cannot proceed due to the middle ridges.

Hence dQ = −dW = PextdV = 0. To determine the entropy change we need, however, a reversible
alternative process, which results in ∆S = nR ln V2

V1
= nR ln 2, so, again, an increase in entropy for a

larger volume.
We can interpret the above mentioned results in terms of statistical thermodynamics. The distribution of
particles over the different energy levels according to the Boltzmann distribution depends on the energies
of all available states. And accordingly, a certain distribution is associated with a certain temperature.
All three experiments were run isothermally, so the temperature can be chosen the same for all three.
However, the energies of the available states do change. For a perfect gas of atoms the only relevant

1We find the same result with equation (129), that was derived at constant (total) pressure and temperature; using
xA = xB = 0.5 we obtain ∆mixS = −nR ln 1

2
= nR ln 2, with n = nA + nB . However, in that case it concerned

spontaneous (irreversible) mixing, in which Pext = 0, such that 0 = W = −Q = Qenv (see also table 4).
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energies are the ones correponding to the translational motions of the atoms (compare Figure 1). There
is no interaction between the atoms of perfect gases, not even for mixtures, other than elastic collisions.
From a quantum mechanical point of view the energies are determined by the size of the volume of
the system (and the mass of the atoms) according to (X is the size of the volume in one dimension;
V = XY Z)

εi =
(
i2 − 1

) h2

8mX2
with partition function q =

V

Λ3
and Λ =

h√
2πmkT

. (130)

So only a volume change results in a change of the energy levels. An increase in V leads to a smaller
distance between the energy levels, therefore an increase in the number of thermally available levels at
a given temperature and thus an increase in entropy. This explains the absence of an entropy change in
the first experiment, despite the increase of disorder in that experiment.
In table 4 all the entropy changes for the three processes are listed again.

exp. ∆S ∆Senv ∆Stot rev./irr.
1 0 0 0 reversible
2 (nA + nB)R ln 2 −(nA + nB)R ln 2 0 reversible
3 nR ln 2 0 nR ln 2 irreversible

Table 4: An overview of the entropy changes for the three processes.

Thermodynamic entropy as a function of temperature

The third law of thermodynamics, which is in agreement with the Boltzmann definition of entropy thus
sets the absolute value of the entropy according to equation (126). This is in contrast to all forms of
energy that we have encountered, for which no absolute value is set. We chose that zero point by setting
the standard enthalpy of formation and the standard Gibbs free energy of formation of the elements in
their reference state to zero (Atkins paragraph 2C.2 and 3C.2a).
For entropy we can proceed one step further. The temperature dependence of the entropy follows from

S(T ) = S(T = 0) +

∫ T

0

dQrev

T
= S(0) +

∫ T

0

CP,V
T

dT, (131)

where CP or CV can be used for an isobaric or isochoric process, respectively. In all other cases we
have to choose an alternative reversible path. In general Qrev = Qrev(T ) and CP,V = CP,V (T ), so these
are dependent on T . At T = 0 the state of aggregation of nearly all substances is the crystalline state.
For increasing temperature, in general, two phase transitions will be encountered, namely from solid to
fluid at T = Tfus and from the fluid phase to the gas phase at the boiling point, T = Tb. At these
phase transition temperatures a jump in the entropy occurs. Since at any phase transition temperature,
T = Ttrs, two phases are in equilibrium with each other the Gibbs free energy at that temperature (and
corresponding pressure) equals zero (cf. equations (68) and (69)).

∆trsG (Ttrs) = 0 such that ∆trsH − Ttrs∆trsS = 0 or ∆trsS =
∆trsH

Ttrs
. (132)

This results in a general expression for the (absolute) entropy of a pure compound, in the case of an
isobaric process, according to

S(T ) = S(0) +

∫ Tfus

0

CP (s)

T
dT +

∆fusH

Tfus
+

∫ Tb

Tfus

CP (l)

T
dT +

∆vapH

Tb
+

∫ T

Tb

CP (g)

T
dT, (133)

in which we set S(T = 0) = 0 according to the third law of thermodynamics and we should not forget
that the heat capacity remains a function of temperature in every state of aggregation.
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Appendix A

State functions and total differentials

A state function is a function that only depends on the state of the system and is independent of how that
state was reached. With that, a state function only depends on the state variables. The state variables
of a system are P , T , V and n. The relation between the state variables is given by the equation of state.
For a perfect gas (irrespective of whether it is an atomic or a molecular gas) the equation of state is given
by

PV = nRT (A-1)

For an arbitrary system, for example a Van der Waals gas, this relation is of course more complicated.
We have already seen the internal energy U or E as examples of a state function. It does not matter how
we reached a certain state given by P , T , V and n, the internal energy is only determined by those state
variables. The same holds for the enthalpy, simply because of the definition H ≡ U + PV .
For a perfect gas, both the internal energy U and the enthalpy H turned out to depend only on the
temperature T and the number of moles n via U = 3

2nRT and H = 5
2nRT , respectively (we disregard the

energy of molecular vibrations and rotations in this appendix; in other words, we consider a perfect gas to
be a perfect atomic gas here). Via the equation of state (A-1) we also could have written U = 3

2PV and
H = 5

2PV . These expressions show how the state functions energy and enthalpy change as a function of
the state variables.
More general, the total differential of a state function shows how that function changes when we change
the state variables. Therefore it is important which variables can be changed. In fact, the equation of
state poses limitations on this.
For a closed system there is no exchange of matter with the surroundings such that n is constant. This
leaves three variables P , T and V . However, according to the equation of state only two of these variables
are free. For example if we give P and T a certain value, then V is fixed. If we set P and V , then T
is fixed, whereas a choice of T and V fixes the value P via the equation of state. In other words, for a
closed system we only have two variables that we can choose independently. Then we can write the total
differential of a state function as a general change of that function determined by the change of the two
independent state variables that we can choose freely.
For example if we choose P and T as variables, then the total differential of for example the total energy
for a closed system (dn = 0) is given by

dU =

(
∂U

∂P

)
T,n

dP +

(
∂U

∂T

)
P,n

dT. (A-2)

In case it is clear that one is considering a closed system and therefore dn = 0, the last subscript is
usually omitted, which results in

dU =

(
∂U

∂P

)
T

dP +

(
∂U

∂T

)
P

dT. (A-3)

If we choose P and V as independent variables, then the total differential thus becomes

dU =

(
∂U

∂P

)
V

dP +

(
∂U

∂V

)
P

dV. (A-4)

Let us consider the last expression (A-4) in somewhat more detail. This expression describes the change
of U at constant n. Say we consider the behaviour of U at n = n1. The first term describes how U
changes as function of P if we also take V constant (say V = V1). To that end, T has to ’follow’ to still
obey the equation of state. That term thus represents how U changes as a function of P in a state given
by (V1, n1). That change will still be a function of P and thus depend on the value of P for which we
consider the change (say for P = P1). Then the term

(
∂U
∂P

)
is nothing more than the derivative of U with

respect to P in the point (P1, V1, n1). That derivative is a measure for the steepness of U in that point
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if we only change P infinitesimally with dP . The second term represents the analogous change of U in
the point (P1, V1, n1) if we change V infinitesimally with dV . The total change of U is the sum of the
two and is difficult to plot since for the independent variables P and V together with the change of the
function (U) this results in a three-dimensional plot. An attempt to plot this in given in the figure below.
In this figure a ’landscape’ of U has been plot as a function of P and V at a chosen value n = n1. Due to

P

U

(δ U)
δ P

(P ,V  ,n )

U(P,V,n )
1

U(P,V ,n )
1 1

111

1V n1

−V

the sign of the term −PdV in dU = TdS − PdV the V -axis is plotted as −V . The partial derivative of
that landscape at constant volume (V = V1) is indicated for the point (P1, V1, n1). The displayed state
function can never be that of a perfect gas, because then due to the state function the internal energy
would be given by U = 3

2PV , such that at constant V the internal energy would be a linear function
of P . If we would now consider another state, for example in a point (P2, V1, n1), then both derivatives
from (A-4) would have a different value, since in general the derivative of a function depends on where
you determine that derivative, which is also the case in the figure (only for a perfect gas the derivative is
independent of the point along the P -axis or the point along the V -axis, respectively, due to the linear
dependency mentioned earlier). We find different values again in the point (P1, V2, n1). Moreover, we
also find different values for those derivatives in a point (P1, V1, n2). However, due to the equation of
state we can only choose two independent variables for a closed system. If we would change P , V and T
arbitrarily, we would likely end up in states (P, V, T ) that are impossible (in equilibrium) for our system.
The fact that, for example, U is a state function, and thus has a value independent of the path taken
to reach that state, also means that also infinitesimally it does not matter whether we first change P
and then V or the other way around to go from the point (P1, V1) to the point (P2, V2) at constant n.
The final value T2 automatically is the same for both paths. This holds for any state function. A state
function is also called a conserved quantity.
If we would have chosen P and T as independent variables, then we could have explained equation (A-3)
analogously. Which variables we choose as independent is usually determined by the process we want to
describe. For example, for an isothermal process in a closed system we could choose P and T or V and
T , because for both choices the term dT in equation (A-3) would vanish.
For an open system we have three independent variables. Choosing for example T , V and n as independent
variables, this results in the total differential

dU =

(
∂U

∂T

)
V,n

dT +

(
∂U

∂V

)
T,n

dV +

(
∂U

∂n

)
T,V

dn. (A-5)

We will return to open systems later on in the course.
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Appendix B

Glossary

Microscopic On an atomic or molecular scale.

Macroscopic Seen from an helicopter view, in such a way that we can forget about microscopic processes
(averaging).

System That part of the universe in which we are interested; we only consider macroscopic systems with
many particles in thermodynamics.

Surroundings The rest of the universe we need to allow exchange of matter or energy with the system;
is also a system, but not the system.

Thermal bath A heat reservoir (usually as surroundings), from which you can extract heat or to which
you can deliver heat, without changing the temperature of the reservoir.

State variables Macroscopic quantities (P, V, T, n, · · ·) that describe the thermodynamic state of a
system. For a complete description a minimal amount of (independent) state variables is required.

Equation of state Relation between state variables that determines the possible states of the system
in thermodynamic equilibrium.

Thermodynamic equilibrium A system is in thermodynamic equilibrium if the state variables of the
system do not change spontaneously.

State function A (thermodynamic) single valued function of the (independent) state variables; The
value of a state function is independent of the way the system has reached a certain state.

Reversible process A process during which the system is in thermodynamic equilibrium at every mo-
ment; with that a reversible process is also reversible.

Irreversible process A process that is not necessarily reversible.

Isothermal process A process that proceeds at constant temperature (dT = 0 for the system).

Isobaric process A process that proceeds at constant pressure (dP = 0 for the system).

Isochoric process A process that proceeds at constant volume (dV = 0 for the system).

Adiabatic process A process that proceeds without heat exchange with the environment (dQ = 0).

Isolated system No exchange between system and surroundings (dW = dQ = dn = 0).

Closed system No exchange of matter between system and surroundings (dn = 0); there can be ex-
change of work (dW 6= 0) or heat (dQ 6= 0).

Open system A non-closed system (dn 6= 0).

Homogeneous system A system in which every (macroscopic) subsystem has the same properties.

Isotropic system A system that has the same properties in all directions, such as an homogeneous
fluid. A crystal is not isotropic.

Intensive quantity Does not change if we enlarge the system; e.g. T and P .

Extensive quantity Doubles if we make the system twice as large; e.g. V and n.

Statistical thermodynamics Relates microscopic processes and (macroscopic) thermodynamics.
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Appendix C

Formulae

PV = nRT = NkT

U =
3

2
nRT =

3

2
NkT

∆U = W +Q

dW = −Pext.dV + dW ′ and dW ′max = (dG)P,T

dQ|P = CPdT and dQ|V = CV dT

Q1

Q2
= −T1

T2

dS =
dQrev

T
≥ dQ

T

dStot = dS + dSenv ≥ 0

dU = −PdV + TdS +
∑
i

µidni

H = U + PV

dH = V dP + TdS +
∑
i

µidni

A = U − TS
dA = −PdV − SdT +

∑
i

µidni

G = H − TS
dG = V dP − SdT +

∑
i

µidni

∆rG =

(
∂G

∂ξ

)
P,T

= ∆rG
� +RT lnQ with Q =

∏
i

aνii

RT lnK = −∆rG
�

E = E� − RT

νF
lnQ and dW ′ = Edq furthermore E = IR and P = EI

µi = µ�
i +RT ln ai = µ�

i +RT ln
Pi
P�

GP,T =
∑
i

µini∑
j

njdµj = 0

∆T =

(
RT ∗2

∆trsH

)
xB

∆S = −nR (xA lnxA + xB lnxB)

Π = [B]RT =
nB
V
RT

S = k lnW

ni
N

=
exp −εikT

q
with q =

∑
i

exp
−εi
kT

and < X >= N < x >= N
∑
i

xi
ni
N
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