
Solutions Exercise Classes 2, Physical Chemistry 1 2021/2022

Exercise 6

a) Isothermal so ∆T = 0, hence
• T2 = T1 = 298 K.
Moreover, it is a perfect gas so (reversible so Pext. = P ; furthermore n = 1 mol)

W = −
∫ V2

V1
PdV = −RT

∫ V2

V1

dV
V = −RT ln V2

V1
= −RT ln P1

P2
= −8.31 · 298 ln 5.0

1.0 = −4.0 kJ, so
•W = −4.0 kJ, so the system does work on the surroundings.
Perfect gas so U only depends on T ; also isothermal hence
•∆U = 0.
∆U = W + Q = 0, so
• Q = 4.0 kJ.
Reversible process so Qrev = Q.

Isothermal so ∆S =
∫

dQrev

T = 1
T

∫
dQ = Q

T = 4.0·103
298 = 13.4 JK−1, therefore

• ∆S = 13.4 JK−1.
A ≡ U − TS. Thus at constant T we find ∆A = ∆U − T∆S = 0− 298 · 13.4 = −4.0 kJ, so
• ∆A = −4.0 kJ.
G ≡ H − TS. So for constant T we find ∆G = ∆H − T∆S. For a perfect gas H only depends on
T so ∆H = 0, such that
• ∆G = −T∆S = −4.0 kJ.

b) • State functions.
The change in a state function (conserved quantity) is independent of the path taken during a
process and is only determined by the initial and the final state. Both processes are isothermal and
also have the same final pressure such that (n is constant) due to the equation of state (perfect gas,
so PV = nRT ) also the final volume must be equal for both processes.
So also the final states are equal for both processes. U , H, A, G and S are state functions, so ∆U ,
∆H, ∆A, ∆G and ∆S must be equal for both processes.
• Non state functions.
Q and W are not state functions. Since Q will be different for the two processes, also the entropy
change for the surroundings will be different.

c) We therefore only have to consider W and Q for the irreversible process.
Isothermal so ∆T = 0, such that still T2 = T1 = 298 K. Moreover, the final pressure of the gas is
P2 = Pext and Pext is constant during the process.
For the work (not reversible so Pext. 6= Pgas) we need to return to the definition

W = −
∫ V2

V1
Pext.dV = −Pext.

∫ V2

V1
dV = −Pext.∆V = −P2(V2−V1) = −RT+P2

RT
P1

= −RT
(

1− P2

P1

)
=

−8.31 · 298
(
1− 1.0

5.0

)
= −2.0 kJ, so

•W = −2.0 kJ.
So the work done by the gas on the surroundings (W < 0) is smaller for the irreversible process.
We already found that ∆U = 0, such that Q = −W , therefore
• Q = 2.0 kJ.
This implies that, due to the constant internal energy of the perfect gas at constant T , the heat
absorbed by the gas from the surroundings (the bath) is smaller for the irreversible process. The
entropy of the surroundings, therefore, decreases less (∆Senv = −Q

T ) for the irreversible process.
The smaller value for the heat also serves as an example for the Clausius inequality as a formulation
of the second law:

dQ ≤ TdS, with dQrev ≡ TdS, so dQirr < dQrev and Qirr < Qrev.
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Exercise 7

a) Adiabatic so Q = 0.
In vacuum so Pext. = 0⇒ dW = −Pext.dV = 0, even though the volume increases.
Thus ∆U = W + Q = 0; perfect gas so U = U(T ), with dU = 0, so dT = 0, and T2 = T1.
Apparently the gas expands isothermally such that P1V1 = nRT and P2V2 = nRT or P1V1 = P2V2.

b) S is a state function, so to determine ∆S ≡
∫

dQrev

T we can choose an alternative reversible path
as in Figure 1, for which ∆SAB = ∆SAC + ∆SCB .
—Process AC is reversible, so dQrev = dQ = dU − dW = dU + Pext.dV = dU + PdV .
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Figure 1: AB is the irreversible process; ACB is the alternative path with AC a reversible isobaric
expansion and CB a reversible isochoric pressure decrease. Note: the temperature is only constant on
the isotherm AB.

Also isobaric, so dP = 0. Therefore, the enthalpy H becomes a suitable energy function:
dH ≡ dU + d(PV ) = dU + PdV + V dP = dU + PdV = dQ− PdV + PdV = dQ.
Therefore dQrev = dQ = dH = CP dT , because

(
∂H
∂T

)
P
≡ CP .

For a perfect gas CP (and also CV ) is independent of the temperature, so the entropy change of

the path AC is equal to ∆SAC =
∫ TC

T1

dQrev

T =
∫ TC

T1

CP dT
T = CP ln TC

T1
.

—Process CB is isochoric, so dV = 0 and the internal energy U becomes a suitable energy function.
dU = dQ− PdV = dQrev − PdV = dQrev, since CB is reversible and isochoric.

The entropy change is therefore ∆SCB =
∫ T2

TC

dQrev

T =
∫ T2

TC

CV dT
T = CV ln T2

Tc
.

—Thus we find in total ∆SAB = ∆SAC + ∆SCB = CV ln T2

TC
+ CP ln TC

T1
.

Earlier we found T2 = T1 ≡ T , so ∆SAB = CV ln T
TC

+ CP ln TC

T = (CV − CP ) ln T
TC

.
TC follows from the equation of state applied at the state C, where P1V2 = nRTC .
Using nRT = P1V1 = P2V2 it follows that
∆SAB = (CV − CP ) ln nRT

P1V2
= (CV − CP ) ln P1V1

P1V2
= (CV − CP ) ln V1

V2
.

If we limit ourselves to a perfect gas of atoms, then for the heat capacities we have CV = 3
2nR and

CP = 5
2nR, such that ∆SAB = ( 3

2 −
5
2 )nR ln V1

V2
= −nR ln V1

V2
= nR ln V2

V1
.

This expression holds for both an atomic gas as well as a molecular perfect gas, since the vibrations
and rotations of molecules do not contribute to the difference term H − U = PV .

Allthough the suggested solution has the didactical advantage of illustrating the use of an alternative
path to determine the change of a state function, the result can be obtained much easier by sticking
to the original isotherm, and only performing the expansion reversibly.
Then the latter condition ensures that dS ≡ dQrev

T = dQ
T , and the first condition (dT = 0) that

dU = 0, so dQ = −dW = PdV , resulting in
∆S =

∫
dS =

∫
dQ
T =

∫
PdV
T = nR

∫
dV
V = nR ln V2

V1
.

Of course, the process is then no longer adiabatic, but still is a suitable reversible alternative
between the same begin and end states.

c) Q = 0, therefore ∆Senv = 0 and we find ∆Stot = ∆S + ∆Senv = ∆S. The process proceeds
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spontaneously if ∆Stot > 0, or if V2 > V1, as one would expect. If V2 < V1 (compression), then
∆Stot < 0 and you will have to do work to make the process run.

d) ∆S = nR ln V2

V1
. Since the volumes are present as a ratio in the expression, we can stick to the unit

(L) and find that ∆S = 0.04 · 8.314 ln 2
1 = 0.333 ln 2 = 0.23 J/K.

For the irreversible process AB it holds that dT = 0, such that for the Helmholtz free energy we
find that dA ≡ dU − d(TS) = dU − TdS = 0 − TdS = −TdS, and for the Gibbs free energy
dG ≡ dH − d(TS) = dH − TdS = 0− TdS = −TdS.
At T = 300 K we find ∆A = ∆G = −T∆S = −300 · 0.23 = −69 J.

Exercise 8

Assume that T1 < T2. We denote the final temperature of the entire system as T .
P1 = P2 = Pext. = P is constant, so the process is isobaric.
This does require some explanation. Even though the PV-term for liquids and solids hardly changes
in processes with pressure changes that are not too large, a spontaneous heat transfer between two
liquids can cause a temporary inhomogeneous pressure distribution in the liquids. Therefore it is not
straightforward to let such a process proceed strictly isobarically. In case of doubt we can always choose
an alternative reversible path, for example by making the thermal contact between the two amounts
so bad that the heat transfer is so slow that at every moment during the process the entire system is
in thermodynamic equilibrium, and we only have to wait much longer before the temperatures will be
equilibrated to T .
In any case, reversible or irreversible, the quantities H and S used below are state functions and thus
the change in these quantities is independent of the path.
For an isobaric process the enthalpy H is a suitable function:
dH = dU + PdV + V dP = dU + PdV = dQ− PdV + PdV = dQ.
Since the whole process is running without heat transfer with the surroundings (adiabatic) (of course
there is heat transfer between the liquids) it holds that dQ = 0, so dH = dH1 + dH2 = 0, where H1 and
H2 are the enthalpies of the two liquids.
According to the definition CP =

(
∂H
∂T

)
P

, or dH = CP dT (for CP we assume that it is independent of
the temperature between T1 and T2). We have two equal amounts of liquid, so CP is also equal for both
amounts (note: these are not perfect gases so we have no further information on CP ).
The final temperature of both liquids will be equal to T .
The heat transfer will be from 2 to 1 and without loss due to the adiabatic condition, in other words
Q2→1 = −Q1→2 and therefore CP (T2 − T ) = −CP (T1 − T ), or 2T = T1 + T2, such that T = 1

2 (T1 + T2).

For the change in entropy we find dS = dQrev

T = CP dT
T . Since S is a state function we can choose an

alternative reversible process that results in the same final temperature, as already mentioned above.

∆S = ∆S1 + ∆S2 =
∫ T

T1

CP dT
T +

∫ T

T2

CP dT
T = CP

∫ T

T1

dT
T + CP

∫ T

T2

dT
T = CP ln T

T1
+ CP ln T

T2
= CP ln T 2

T1T2
.

Filling in the expression found previously for T in terms of T1 and T2 results in

∆S = CP ln (T1+T2)
2

4T1T2
= CP ln

T 2
1 +2T1T2+T 2

2

4T1T2
= CP ln

T 2
1−2T1T2+T 2

2 +4T1T2

4T1T2
= CP ln

(
1 + (T1−T2)

2

4T1T2

)
> 0,

because (T1−T2)
2

4T1T2
> 0.

We had already established that because of the adiabatic process the heat transfer with the surroundings
is zero, so dSenv = dQenv

T = 0, with which we find for the total entropy change
∆Stot = ∆S + ∆Senv = ∆S > 0.
This result is in agreement with the entropy change for a spontaneous process according to the second
law of thermodynamics.
Moreover, from the expression for ∆S we conclude that (as expected) it is irrelevant whether T1 < T2 or
T1 > T2.
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