

# Solutions Exercise Classes 3 Physical Chemistry 1 2021/2022

## Exercise 9

The equilibrium is given by



This is the inverse reaction of the formation of  $\text{CH}_4(\text{g})$ . The products are elements in their reference state at 298 K ( $\text{C}(\text{s})$  and  $\text{H}_2(\text{g})$ ), so  $\Delta_f G^\ominus(\text{C},\text{s}) = \Delta_f G^\ominus(\text{H}_2,\text{g}) = 0$ . The standard reaction Gibbs free energy  $\Delta_r G^\ominus$  therefore is

$$\Delta_r G^\ominus = \sum_i \nu_i \Delta_f G_i^\ominus = 0 + 0 - \Delta_f G^\ominus(\text{CH}_4,\text{g}) = -\Delta_f G^\ominus(\text{CH}_4,\text{g}).$$

We can determine  $\Delta_f G^\ominus(\text{CH}_4,\text{g})$  with the standard enthalpy and entropy of formation at that (given) temperature:

$$\Delta_f G^\ominus(\text{CH}_4,\text{g}) = \Delta_f H^\ominus(\text{CH}_4,\text{g}) - T \Delta_f S^\ominus(\text{CH}_4,\text{g}) = -74850 - 298 \cdot (-80.67) = -5.081 \cdot 10^4 \text{ J/mol.}$$

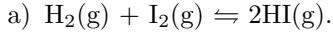
The equilibrium constant  $K$  then follows with

$$\ln K = -\frac{\Delta_r G^\ominus}{RT} = \frac{\Delta_f G^\ominus(\text{CH}_4,\text{g})}{RT} = \frac{-5.081 \cdot 10^4}{8.314 \cdot 298} = -20.51,$$

such that  $K = 1.24 \cdot 10^{-9}$ .

As expected the reaction at 298 K and  $P = P^\ominus$  lies almost completely on the methane side of the equilibrium.

## Exercise 10



$\text{H}_2$  might react fully (corresponding to an extent of reaction  $\xi = 1$ ) and therefore we take  $\text{H}_2$  as reference in the table. The total number of mol does not change as a consequence of the proceeding reaction.

|                             | $\text{H}_2$                        | $\text{I}_2$                          | $\text{HI}$                           | Total |
|-----------------------------|-------------------------------------|---------------------------------------|---------------------------------------|-------|
| Initially (mol)             | 0.300                               | 0.400                                 | 0.200                                 | 0.900 |
| Change (mol)                | $-0.300\xi$                         | $-0.300\xi$                           | $+0.600\xi$                           | 0     |
| Equilibrium (mol)           | $0.300(1 - \xi_{eq})$               | $0.400 - 0.300\xi_{eq}$               | $0.200 + 0.600\xi_{eq}$               | 0.900 |
| Eq. mole fraction ( $x_i$ ) | $\frac{0.300(1 - \xi_{eq})}{0.900}$ | $\frac{0.400 - 0.300\xi_{eq}}{0.900}$ | $\frac{0.200 + 0.600\xi_{eq}}{0.900}$ | 1     |

b) The equilibrium constant is given by (using Dalton's law we can write  $\frac{P_i}{P^\ominus} = \frac{P_i}{P} \frac{P}{P^\ominus}$  as  $\frac{P_i}{P^\ominus} = \frac{n_i}{n} \frac{P}{P^\ominus} = x_i \frac{P}{P^\ominus}$ , moreover the total pressure does not change due to the reaction stoichiometry)

$$K = \frac{\left(\frac{P(\text{HI})}{P^\ominus}\right)^2}{\left(\frac{P(\text{H}_2)}{P^\ominus}\right) \left(\frac{P(\text{I}_2)}{P^\ominus}\right)} = \frac{x^2(\text{HI}) \left(\frac{P}{P^\ominus}\right)^2}{x(\text{H}_2) \frac{P}{P^\ominus} x(\text{I}_2) \frac{P}{P^\ominus}} = \frac{x^2(\text{HI})}{x(\text{H}_2) x(\text{I}_2)} = \frac{\left(\frac{0.200 + 0.600\xi_{eq}}{0.900}\right)^2}{\frac{0.300 - 0.300\xi_{eq}}{0.900} \cdot \frac{0.400 - 0.300\xi_{eq}}{0.900}} = 50.5.$$

c) We can rewrite this equation into a quadratic equation in  $\xi_{eq}$  by rewriting the right-hand part to

$$\left(\frac{0.200 + 0.600\xi_{eq}}{0.900}\right)^2 = 50.5 \left[\frac{0.300 - 0.300\xi_{eq}}{0.900} \cdot \frac{0.400 - 0.300\xi_{eq}}{0.900}\right],$$

which simplifies to

$$(0.200 + 0.600\xi_{eq})^2 = 50.5 [(0.300 - 0.300\xi_{eq}) \cdot (0.400 - 0.300\xi_{eq})].$$

Collecting all terms in powers of  $\xi_{eq}$  leads to

$$4.185\xi_{eq}^2 - 10.845\xi_{eq} + 6.02 = 0.$$

The proper solution to this equation is  $\xi_{eq} = 0.805$  since the other solution (1.786) is larger than the maximum value for  $\xi$ ;  $\xi_{max} = 1$ .

d) Thus in equilibrium we have 0.058 mol H<sub>2</sub>, 0.158 mol I<sub>2</sub> and 0.683 mol HI; besides a small numerical error in total 0.900 mol. Therefore the mole fractions are 0.065, 0.176 and 0.759, respectively; summing up to 1.

## Exercise 11

a) The equilibrium reaction is 2CO<sub>2</sub>(g)  $\rightleftharpoons$  2CO(g) + O<sub>2</sub>(g). The progression of the reaction  $\xi$  (the extent of reaction) is the degree of dissociation  $\alpha$  and is defined per mol CO<sub>2</sub> for the reaction CO<sub>2</sub>(g)  $\rightleftharpoons$  CO(g) +  $\frac{1}{2}$ O<sub>2</sub>(g). The total number of moles in the mixture is at every moment equal to  $(1 - \alpha)n + \alpha n + \frac{1}{2}\alpha n = (1 + \frac{\alpha}{2})n$ , leading to the following table.

N.B.: The number of mol CO<sub>2</sub> with which we start,  $n$ , disappears in the mole fractions and in the

|                  | CO <sub>2</sub> (g)                          | CO(g)                                   | O <sub>2</sub> (g)                                    |
|------------------|----------------------------------------------|-----------------------------------------|-------------------------------------------------------|
| Amount           | $(1 - \alpha)n$                              | $\alpha n$                              | $\frac{1}{2}\alpha n$                                 |
| Mole fraction    | $\frac{1 - \alpha}{1 + \frac{\alpha}{2}}$    | $\frac{\alpha}{1 + \frac{\alpha}{2}}$   | $\frac{\frac{1}{2}\alpha}{1 + \frac{\alpha}{2}}$      |
| Partial pressure | $\frac{(1 - \alpha)P}{1 + \frac{\alpha}{2}}$ | $\frac{\alpha P}{1 + \frac{\alpha}{2}}$ | $\frac{\frac{1}{2}\alpha P}{2(1 + \frac{\alpha}{2})}$ |

partial pressures. Eventually only the total pressure  $P$  is what counts and we chose this pressure to be constant (1 bar).

b) The equilibrium constant of the reaction can be expressed in the partial pressures of the perfect gases ( $P = 1$  bar and use that at the given temperatures  $\alpha \ll 1$ )

$$K = \left( \prod_j \left( \frac{P_j}{P^\ominus} \right)^{\nu_j} \right)_{eq} = \frac{\left( \frac{P_{CO}}{P^\ominus} \right) \left( \frac{P_{O_2}}{P^\ominus} \right)^{\frac{1}{2}}}{\left( \frac{P_{CO_2}}{P^\ominus} \right)} = \frac{\left( \frac{\alpha}{1 + \frac{\alpha}{2}} \right) \left( \frac{\frac{\alpha}{2}}{1 + \frac{\alpha}{2}} \right)^{\frac{1}{2}} \left( \frac{P}{P^\ominus} \right)^{\frac{1}{2}}}{\left( \frac{1 - \alpha}{1 + \frac{\alpha}{2}} \right)} = \left( \frac{\alpha}{1 - \alpha} \right) \left( \frac{\frac{\alpha}{2}}{1 + \frac{\alpha}{2}} \right)^{\frac{1}{2}} \approx \frac{\alpha^{\frac{3}{2}}}{\sqrt{2}}.$$

c) The equilibrium constant for the reaction 2CO<sub>2</sub>(g)  $\rightleftharpoons$  2CO(g) + O<sub>2</sub>(g) has the value  $K^2$ . More general, for the reaction  $\nu$ CO<sub>2</sub>(g)  $\rightleftharpoons$   $\nu$ CO(g) +  $\frac{\nu}{2}$ O<sub>2</sub>(g) we find the value  $K^\nu$ . In other words, the equilibrium constant  $K$  depends on the way we express the stoichiometry in the chemical reaction. This is in agreement with the expression for the reaction Gibbs free energy  $\Delta_r G = \Delta_r G^\ominus + RT \ln Q$  which for the last reaction in terms of  $\nu$ CO<sub>2</sub> becomes equal to  $\nu\Delta_r G = \nu\Delta_r G^\ominus + \nu RT \ln Q = \nu\Delta_r G^\ominus + RT \ln Q^\nu$ .

d) In equilibrium  $\Delta_r G = 0$  and  $Q_{eq} = K$ .

Substituting the values for  $\alpha$  in the expression for  $K$  leads to the values in the table below. The standard reaction Gibbs free energy is obtained using  $\Delta_r G^\ominus = -RT \ln K$  (see table). We find the temperature dependence of the equilibrium constant as follows ( $\Delta_r G^\ominus = \Delta_r H^\ominus - T\Delta_r S^\ominus$ )

$$\ln K = -\frac{\Delta_r G^\ominus}{RT} = -\frac{\Delta_r H^\ominus}{RT} + \frac{\Delta_r S^\ominus}{R}$$

Assuming that  $\Delta_r H^\ominus$  and  $\Delta_r S^\ominus$  are constant for the temperature range of the table we can rewrite this equation to

$$\ln K(T_2) = \ln K(T_1) - \frac{\Delta_r H^\ominus}{R} \left( \frac{1}{T_2} - \frac{1}{T_1} \right).$$

We can use this equation for every combination of two from the given temperatures and  $K$ -values to determine  $\Delta_r H^\ominus$ . Combining column 1 and 2 we find  $\Delta_r H^\ominus = 290 \text{ kJ/mol}$ , using column 2 and 3:  $309 \text{ kJ/mol}$  and for column 1 and 3:  $300 \text{ kJ/mol}$ ; on average  $\Delta_r H^\ominus = 300 \text{ kJ/mol}$ .

$\Delta_r S^\ominus$  then follows using  $\Delta_r S^\ominus = \frac{\Delta_r H^\ominus - \Delta_r G^\ominus}{T}$  and taking the average value for  $\Delta_r H^\ominus$ .

| $T(\text{K})$                         | 1395                 | 1443                 | 1498                 |
|---------------------------------------|----------------------|----------------------|----------------------|
| $\alpha$                              | $1.44 \cdot 10^{-4}$ | $2.50 \cdot 10^{-4}$ | $4.71 \cdot 10^{-4}$ |
| $K$                                   | $1.22 \cdot 10^{-6}$ | $2.80 \cdot 10^{-6}$ | $7.23 \cdot 10^{-6}$ |
| $\Delta_r G^\ominus (\text{kJ/mol})$  | 158                  | 153                  | 147                  |
| $\Delta_r S^\ominus (\text{J/mol K})$ | 102                  | 102                  | 102                  |