
Solutions Exercise Classes 5 Physical Chemistry 1 2021/2022

Exercise 15

For ideal solutions we have found for the entropy of mixing

∆mixS = −nR (xA lnxA + xB lnxB) = −nR (xA lnxA + (1 − xA) ln(1 − xA)) .

We find the minimum either by realizing that this is a symmetric function in xA = 1
2 , or by finding the

minimum by putting the derivative with respect to e.g. xA equal to zero:

d∆mixS

dxA
= −nR

(
lnxA +

xA
xA

− ln(1 − xA) − 1 − xA
1 − xA

)
= −nR ln

xA
1 − xA

= 0 for xA =
1

2
.

a) Thus in terms of mole fractions we find the maximum entropy of mixing at xA = xB = 1
2 . In terms

of numbers of mol:

nhex
nhept

=

nhex

nhex+nhept

nhept

nhex+nhept

=
xhex
xhept

=
xA
xB

= 1 or nhex = nhept.

b) In terms of mass this becomes (using the molar mass M) :

mhex

mhept
=

nhexMhex

nheptMhept
= 1 · Mhex

Mhept
=

86.17 g mol−1

100.20 g mol−1
= 0.8600.

Exercise 16

We substitute the measured temperature increase into the standard expression for boiling point elevation:

∆T = KxB in which K =
RT ∗2

∆vapH
,

or

0.80 = ∆T =
RT ∗2

∆vapH
· nB
nbenzene + nB

=
8.314 · 353.302

30.8 · 103
·

10
MB

100
78.11 + 10

MB

=
8.314 · 353.302

30.8 · 103 ·
(

10
78.11MB + 1

) .
With this we find

MB = 321 g/mol.

Exercise 17

a) For a non-ideal solution the chemical potential of component A is µA = µ∗A + RT ln aA instead of
the ideal solution approximation µA = µ∗A + RT lnxA. This implies that in the derivation for the
osmotic pressure we also have to replace lnxA by ln aA, in which aA is the activity of component A
in the solution. So we can continue the original derivation for the osmotic pressure at the equation

−RT lnxA = Vm,AΠ.

Replacing lnxA by ln aA immediately gives the accurate result for the osmotic pressure

Π = − RT

Vm,A
ln aA.

Note that A represents the solvent, while in the approximated van ’t Hoff equation the concentration
of the solute B shows up.
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b) The osmotic pressure of an ideal solution is given by the van ’t Hoff equation Π = [B]RT .

This approximation for very dilute solutions leads to the result Π = [B]RT = 0.282 mol/dm
3 ·

8.314 J/mol K · 293.2 K = 687 J/dm
3

= 687 Nm/dm
3

= 687 · 103 N/m
2

= 6.87 · 105 Pa = 6.87 bar.

c) We use the result of a).

The molar volume of water at 20 ◦C and 1 atm is V ∗m,H2O
= 18.015 g/mol

0.998 g/cm3 = 18.05 cm3/mol. The

osmotic pressure is Π = 7.61 atm = 1.01325 · 7.61 = 7.71 bar = 7.71 · 105 N/m2. Using this result,
we find for the activity of the water (component A)

ln aA = −ΠVm,A
RT

= −
ΠV ∗m,H2O

RT
= −7.71 · 105 Nm−2 · 18.05 · 10−6 m3mol−1

8.314 J mol−1 K−1 · 293.2 K
= −5.71 · 10−3,

so aA = 0.9943.
Note, that by using only SI-units, it is easily checked that ln aA is dimensionless (has no units).
The activity coefficient γH2O of the solvent (on the mole fraction scale) follows with ai = γixi and
is easiest determined via the molality bi of the components, according to

γH2O =
aH2O

xH2O
= aH2O

nH2O + nB
nH2O

= aH2O
bH2O + bB
bH2O

= 0.9943
103

18.015 + 0.300
103

18.015

=
0.9943

0.9946
= 0.9997.

Exercise 18

a) We obtain the pressure dependence of µ by integrating µ with the standard pressure P� as reference
point. For a pure substance we can replace µi by Gm,i and at constant T the term −SdT vanishes.

µi(P ) = µi(P
�)+

∫ P

P�

dµi = µi(P
�)+

∫ P

P�

dGm,i = µi(P
�)+

∫ P

P�

Vm,idP
′ = µ�

i +

∫ P

P�

Vm,idP
′,

where P ′ is used to avoid confusion between the dummy variable in the integral and the pressure
P of the system. If we combine this result with the definition of the activity ai we find

RT ln ai(P ) = µi(P ) − µ�
i =

∫ P

P�

Vm,idP
′.

b) A pure perfect gas in a multi-component system is, of course, only relevant if the gas does not mix
with any other of the other components, e.g. liquids or solids. In that case the partial pressure
of the gas is equal to the total pressure of the system and the equation of state of the perfect gas
PV = nRT can be rewritten in terms of the molar volume, Vm,i = RT

Pi
= RT

P , such that

RT ln ai(P ) =

∫ Pi

P�

Vm,idP
′ =

∫ P

P�

Vm,idP
′ = RT

∫ P

P�

dP ′

P ′
= RT ln

P

P�
, or ai(P ) =

P

P�
.

In other words, for a perfect gas the activity is equal to the pressure in bar. Substituting P = 21 bar
results in ai = 21. It is, however, questionable whether the perfect gas law still applies at such a
pressure, but nevertheless the activity will be much larger than 1.

c) The molar volume of water at 298 K and P = P� is V �
m,i = M

ρ�
= 18.02/0.997 = 18.07 cm3/mol

= 18.07·10−6 m3/mol. Because the compressibility is considered to have a negligible effect on the
volume for the applied pressure difference, we can safely assume V �

m,i to be constant. For the
activity we then find

ln ai(P ) =
1

RT

∫ P

P�

Vm,idP
′ =

V �
m,i

RT

(
P − P�

)
=

18.07 · 10−6

8.314 · 298
(21 − 1) · 105 = 0.0146.

So the activity at that pressure is ai = 1.0147, which, despite the large pressure, deviates less than
2 % from the assumption ai(s, l) = 1.
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d)

ln ai(P ) =
1

RT

∫ P

P�

Vm,idP
′ =

1

RT

∫ P

P�

V �
m [1 − βP ′] dP ′ =

V �
m

RT

[
(P − P�) − β

2

(
P 2 − P�2

)]
=

18.07 · 10−6

8.314 · 298

[
(21 − 1) · 105

]
− 18.07 · 10−6

8.314 · 298

[
4.6 · 10−10

2

(
212 − 12

)
· 1010

]
= 0.0146 − 7.38 · 10−6.

This result is not very worrying, but if the pressure is much higher than 20 bar the error as a result
of the incompressibility assumption can become too large.
The temperature also has a small effect since the thermal expansion is usually very small.
For solid or fluid phases with a large molar volume Vm such as polymers, the assumption might
become inadequate.
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