Solutions Exercise Classes 5 Physical Chemistry 1 2021/2022

Exercise 15
For ideal solutions we have found for the entropy of mixing
ApmizS=-nR(xalnzs+aplnzg)=—nR(@slnzs+ (1 —24)In(l —2x4)).

We find the minimum either by realizing that this is a symmetric function in z4 = %, or by finding the
minimum by putting the derivative with respect to e.g. x4 equal to zero:

TA
l—x4

1—xA

SnR(lnxAerAln(le) )ann =0 for xA:a

dz TA 1—z4
a) Thus in terms of mole fractions we find the maximum entropy of mixing at x4 = xp = % In terms
of numbers of mol:
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b) In terms of mass this becomes (using the molar mass M) :

Mhex nhethex -1 Mhem o 8617gm01_1 = (0.8600

Mhept B nhepchept . Mhept B 100.20 g molfl

Exercise 16

We substitute the measured temperature increase into the standard expression for boiling point elevation:

AT = Kzp in which K = ABZZ;;I’
or
080 AT FTZ ns 8314-8358.30°  app 8.314-353.30°
AypapH  Nbenzene + 1B 30.8-103 % + 1\% 30.8-103 - (%MB T 1)

With this we find

Mp = 321 g/mol.

Exercise 17

a) For a non-ideal solution the chemical potential of component A is pa = p* + RT Inay instead of
the ideal solution approximation p4 = p% + RT Inz 4. This implies that in the derivation for the
osmotic pressure we also have to replace Inx 4 by Ina,, in which a4 is the activity of component A
in the solution. So we can continue the original derivation for the osmotic pressure at the equation

—RT'Inxa =V all.

Replacing Inxz 4 by Ina, immediately gives the accurate result for the osmotic pressure

T
H:f‘f Inay.

m,A

Note that A represents the solvent, while in the approximated van 't Hoff equation the concentration
of the solute B shows up.



b)

The osmotic pressure of an ideal solution is given by the van 't Hoff equation II = [B]RT.
This approximation for very dilute solutions leads to the result II = [B]RT = 0.282 mol/dm” -
8.314 J/mol K - 293.2 K = 687 J/dm® = 687 Nm/dm® = 687 - 103 N/m* = 6.87 - 10° Pa = 6.87 bar.

We use the result of a).

The molar volume of water at 20 °C and 1 atm is V,; 5.0 = %ﬁ = 18.05 cm?/mol. The

osmotic pressure is I = 7.61 atm = 1.01325 - 7.61 = 7.71 bar = 7.71 - 10° N/m?. Using this result,
we find for the activity of the water (component A)

OV, 4 V7 .0 7.71-10° Nm~2-18.05- 10~% m®mol * s
lnaA:— = — : = — = = -5.71-10 s
RT RT 8.314 Jmol ' K-1.293.2 K

so as = 0.9943.

Note, that by using only Sl-units, it is easily checked that Ina, is dimensionless (has no units).
The activity coefficient vg,o of the solvent (on the mole fraction scale) follows with a; = y;x; and
is easiest determined via the molality b; of the components, according to

b b 10° 1 0.300 0.9943
a0 = 20 _ amow _ Ww — 0.9943 5015 _* _ — 0.9997.
TH,0 NH,0 br,o 181_%15 0.9946

Exercise 18

a)

We obtain the pressure dependence of p by integrating p with the standard pressure P© as reference
point. For a pure substance we can replace p; by Gy, ; and at constant T the term —SdT vanishes.

P P P P
pi(P) = Mz‘(Pe)-l-/ dui = Mz’(P®>+/ dGpm,; = Mi(P®)+/ Vi idP' = lii@-i-/ VinidP',
Po PO PO PO

where P’ is used to avoid confusion between the dummy variable in the integral and the pressure
P of the system. If we combine this result with the definition of the activity a; we find

P
RTIna;(P) = p;(P) — uf = / Vi idP'.
PO

A pure perfect gas in a multi-component system is, of course, only relevant if the gas does not mix
with any other of the other components, e.g. liquids or solids. In that case the partial pressure
of the gas is equal to the total pressure of the system and the equation of state of the perfect gas

PV =nRT can be rewritten in terms of the molar volume, V,,, ; = 1%“ = R—g, such that

P; P P /
‘ dpr P P
RTIna;(P) = Vin s d P’ :/ Vin.id P’ :RT/ =RIT'In—, or a;(P)=—.
Py = [ VosaP' = [ ., T o (P)= 5
In other words, for a perfect gas the activity is equal to the pressure in bar. Substituting P = 21 bar
results in a; = 21. It is, however, questionable whether the perfect gas law still applies at such a
pressure, but nevertheless the activity will be much larger than 1.

The molar volume of water at 298 K and P = P© is V,; = 71 = 18.02/0.997 = 18.07 cm® /mol

= 18.07-107% m?/mol. Because the compressibility is considered to have a negligible effect on the
volume for the applied pressure difference, we can safely assume V"?i to be constant. For the
activity we then find

1 [P Vo, 18.07 - 106
Ina;(P) = — VipidP' = 22 (P —PO) = ———— (21 — 1) - 10° = 0.0146.
nai(P) = g7 /p@ ’ wr ) = 3312208 ' )

So the activity at that pressure is a; = 1.0147, which, despite the large pressure, deviates less than
2 % from the assumption a;(s,1) = 1.



1na.(p):1/PV ‘dP':L PV@[l—BP’]dP’:L"? (P—Pe)—é(PQ—PGQ)
! RT Jpo ™' RT Jpo ™ RT 2
18.07 - 10~ 18.07-107% [4.6-10710
=— — _[(21-1)-10°] - 212 — 12) . 1010
8.314 - 298 [ ) ) 8.314 - 298 [ 2 ( )

=0.0146 — 7.38 - 10~ °.

This result is not very worrying, but if the pressure is much higher than 20 bar the error as a result
of the incompressibility assumption can become too large.

The temperature also has a small effect since the thermal expansion is usually very small.

For solid or fluid phases with a large molar volume V,, such as polymers, the assumption might
become inadequate.



