
Solutions Exercise Classes 6 Physical Chemistry 1 2021/2022

Exercise 19

a) Per mole of oxidized glucose 38 mol ATP is formed. If we assume that the energy delivered by the
combustion is fully stored in ATP and also completely released during hydrolysis, we find for the
efficiency under biological standard conditions (∆G|P,T = W ′max, the maximal non-volume work)

η⊕ =
delivered energy

energy input
=

38∆hydrG
⊕(ATP)

∆combG⊕(gluc)
=

38 · (−30) kJ/mol

−2880 kJ/mol
= 0.40 or η = 40 %.

b) The complete combustion reaction for glucose is

C6H12O6(s) + 6O2(g)→ 6CO2(g) + 6H2O(l).

Under the given conditions the reaction Gibbs free energy for combustion of glucose is

∆combG(gluc) = ∆rG
⊕ +RT lnQ.

N.B. Q is now the reaction quotient defined with respect to the biological standard conditions
and thus has a different value than when Q is defined with respect to thermodynamic standard
conditions.
If we assume that the water is present abundantly, so low concentrations of the solutes, we can
assume that aH2O = 1 and we find for the reaction quotient (P⊕ = P� = 1 bar)

Q =

(
PCO2

P�

)6
[gluc]
c�

(
PO2

P�

)6 =

(
5.3 · 10−2

)6
5.6 · 10−2 (0.132)

6 = 0.0747, such that

∆combG(gluc) = −2880 · 103 + 8.314 · 310 ln 0.0747 kJ/mol = −2887 kJ/mol.

This value does not deviate much from the reaction energy under standard conditions.

c) The reaction Gibbs free energy for the hydrolysis of ATP under physiological conditions becomes

∆hydrG(ATP) = ∆rG
⊕ +RT lnQ, in which

Q now has to be expressed with respect to the biological standard, or (we assume again that the
activities can be replaced by molar concentrations)

Q =

[ADP ]
[ADP ]⊕

[Pi]
[Pi]⊕

[H3O
+]

[H3O+]⊕

[ATP ]
[ATP ]⊕

=
1·10−4

1
1·10−4

1
10−7.4

10−7.0

1·10−4

1

= 10−4.4, such that

∆hydrG(ATP) = −30 · 103 + 8.314 · 310 · ln
(
10−4.4

)
= −56 kJ/mol.

The efficiency for physiological conditions thus becomes

η =
38 · (−56) kJ/mol

−2887 kJ/mol
= 0.74 or η = 74 %.

d) The efficiency of an ideal (reversible) heat engine at the given temperatures is given by

η = 1− Tc
Th

= 1− 873

1923
= 0.55 or η = 55 %.

The efficiency of the biological process is therefore significantly higher than that of an ideal diesel
engine. The important difference is that for a diesel engine the heat must be transformed into
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(mechanical) work. The second law of thermodynamics tells us that this is never completely possible,
unless the temperatures Th and Tc are infinitely far apart.
The biological process transforms heat in the form of ∆rG directly into chemical energy in ATP,
at the same temperature. Nevertheless, the second law of thermodynamics also plays a role there.
The entropy of the starting material (glucose) and of the ATP will be different; that difference is
already taken into account in the different Gibbs free energies for the combustion of glucose and for
the hydrolysis of ATP. The transformation of the stored energy into mechanical energy, for example
during a muscle contraction, will again lower the efficiency due to losses.

Exercise 20

a) We assume that the temperature in the deep-cold chamber remains constant. The constant leakage
heat then flows from the surroundings into the system and is absorbed at the low temperature
isotherm of the Carnot-engine at T2 = 250 K. So Q2 = |Qleak

2 | > 0.
The Carnot-engine drops a larger amount of heat Q1 per minute in the surroundings at the higher
temperature T1, so Q1 < 0.
We can determine the cycle direction by realizing that the Carnot-engine must release net heat
(Q = Q1 + Q2 < 0) to cool the chamber. For a circular process it holds that ∆U = 0 such that
W = −Q > 0. So we have to do work on the system to keep the chamber at temperature T2.
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(a) The heat flow in and around the
freezer
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(b) The corresponding Carnot-cycle;
T1 = 300 K and T2 = 250 K

b) Q = 0 for the adiabats AD and CB, such that there ∆U = W . For a perfect gas the internal energy
is only dependent on T ; e.g. U = 3

2nRT for an atomic perfect gas and, more general, U = CV T
for a molecular perfect gas, with CV independent of T, P and V . 1 Thus ∆U and therefore W
is only determined by the initial and final temperatures. WAD = U(TD) − U(TA) = CV (T2 − T1)
and WCB = CV (T1 − T2), such that WAD + WCB = 0. In other words, the net work for the two
adiabats is equal to zero.
Thus the total work W of the Carnot-cycle is only determined by the isotherms. Since for the total
circular process ∆U = 0 applies, the work is given by W = −Q = −(Q1 +Q2)

c) For a Carnot-engine it is derived that (Atkins Justification 3A.1):

Q1

Q2
= −T1

T2

1This might seem confusing. We defined two types of heat capacities: CV ≡
(

∂U
∂T

)
V

and CP ≡
(

∂H
∂T

)
P

. As for perfect

gases U is (linearly) dependent on T and the same holds for H ≡ U + PV = U + nRT , both CV and CP are independent
of T, P and V and CP = CV + nR. So, for perfect gases we can use CV to determine U(T ) and CP to determine H(T ) for
any process whether or not at constant V or P .
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For the Carnot-engine we found in a) Q2 = Qleak
2 = 10kJ/min, such that

Q1 = − 300
25010 · 103 = −12 kJ/min.

d) According to b) the work per minute is W = −(Q1 +Q2) = −(−12 + 10) · 103 = 2 kJ/min.
This is positive work, done on the Carnot-engine as part of the system. This net amount of work
will have to be delivered during the compression and expansion of the gas.

e) For this question the choice for the definition of efficiency is important.
The Carnot-process has a limited efficiency due to the second law of thermodynamics. The second
law (according to Clausius) states that it is impossible to (as only result) withdraw an amount of
heat from a reservoir and completely transfer it to a reservoir with a higher temperature, without
doing work. For the Carnot-cycle of the freezer this is expressed in the work being done which
ensures that more heat is dropped in the environment at T1 than is absorbed at T2. The difference
is equal to the work. The efficiency of the Carnot-cycle in a freezer is the quotient of the useful

(withdrawn) heat and the work that is required for that ηCarnot = |Q2|
|W | = 10·103

2·103 = 5, or 500 %.

This is more than 100 %! This appears strange, but apparently it does not take a lot of energy
(work) to transport a certain amount of heat to a higher temperature. However, the fact is that the
larger the temperature difference, the more energy it costs to transport the heat, since (use again
Q1

Q2
= −T1

T2
)

ηCarnot =
|Q2|
|W |

=
|Q2|

|Q1| − |Q2|
=

1
|Q1|
|Q2| − 1

=
1

T1

T2
− 1

,

such that for T1 > 2T2 we find ηCarnot < 1.

Note the difference compared with the reverse engine, which has an efficiency ηheatengine = |W |
|Q1| < 1.

For the freezer we could even use the heat that is dumped at T1 and now is considered to be lost,
for other useful purposes.
In the Carnot-cycle no energy is lost since W = −(Q1 +Q2).

f) 1. The deep-cold chamber
First we establish that there is no net heat flow in or out of the system (the chamber) (Qleak

2 = −Q2),
such that ∆S = 0 for the system.
2. The Carnot engine
S is a state function, so for any cyclic process

∮
dSCarnot = 0.

We also find this result by looking at the four process steps. The entire Carnot-process (as second
system) is reversible or Qrev = Q for all steps.
For the adiabates Q = 0 such that also there ∆S = 0.

For the isotherms: ∆SCarnot,in = Q2

T2
= 10·103

250 = 40 J/Kmin, or an entropy increase, which is

compensated by ∆SCarnot,out = Q1

T1
= −12·103

300 = −40 J/Kmin.

So ∆SCarnot =
∮

dSCarnot = 0, as for any cyclic process, whether it is run reversibly or irreversibly.
3. The surroundings
The surroundings absorb heat at T1 as a consequence of the work done, such that ∆Ssur,in = Qsur

T1
=

−Q1

T1
= 12·103

300 = 40 J/Kmin. However, at the same time heat is absorbed from the surroundings
Qleak and transferred to the Carnot-engine without losses. This heat absorption also occurs at T1,

such that ∆Ssur,out = Qsur,leak

T1
= −Q2

T1
= −10·103

300 = −33.3 J/Kmin. So the net change in entropy is
∆Ssur = 6.7 J/Kmin.
4. Total
The total entropy change ∆Stot = ∆S + ∆SCarnot + ∆Ssur = 6.7 J/Kmin, which is positive and
therefore the process runs spontaneously. This is the case because we added the Carnot cycle as an
engine with the work W as a kind of fuel. Without the Carnot engine the only change in S would
be the result of Qleak, heating up the chamber until T2 = T1. The supplied work is required to have
the freezer running.
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g) Firstly, the efficiency is determined by the Carnot-process, see e), if we assume that the cooling
process proceeds reversibly. Besides that, there are losses that are not related to the (ideal) Carnot-
process, such as heat leakage at imperfect adiabats, the friction in the pump and electrical losses in
the electrical motor driving the pump. If the cooling power of the Carnot-engine is regulated with a
thermometer then the heat leakage can be compensated exactly, such that a constant temperature
is maintained in the freezing chamber. We can denote the efficiency as a consequence of the friction

in the pump and the electrical losses with ηpump = |W |
|Wpump| , in which Wpump represents the electrical

work that is used in the pump motor. The total efficiency then becomes

η =
|Q2|
|Wpump|

=
|Q2|
|W |

· |W |
|Wpump|

= ηCarnotηpump.

h) For an efficiency of 50 % η = 0.5. The loss is |Q2| = 10 kJ/min. such that the electrical power the
freezer consumes is determined by

P =
|Wpump|

∆t
=
|Q2|
η∆t

=
10 · 103 J

0.5 · 60 s
= 333 Watt.

Exercise 21

First we construct the P − V diagram (see diagram (a)). The isotherms obey P = nRT
V (perfect gas)

and thus have the form of the function P (V ) = constant
V . The exact shape of the adiabats (dQ = 0)

is more difficult to determine. For those interested we explain below, as an example, that the slope of
the adiabat BC becomes less negative for increasing VC . 2 For the P − T diagram we find analogously
PB

PC
=
(

T1

T2

)cv+1

, with increasing slope in the direction of T1 according to dPB

dT1
= PC

(
1
T2

)cv+1

(cv +1)T cv
1 .

We find the shape of the curved isotherms in the S − V diagram as follows. For the isotherms dT = 0
and thus for our perfect gas dU = 0, or TdS − PdV = 0. So the slope of those isotherms in the S − V
diagram becomes dS

dV = P
T = nRT

V T = nR
V . So the slope becomes smaller with increasing V . The slope in

the T −H diagram is CP = CV + nR = nR(cv + 1).
To determine the direction of the cyclic process we consider the following. W = WAB +WBC +WCD +

WDA. For the direction indicated in the P−V diagram (all processes are reversible) WAB = −
∫ B

A
PdV <

0 and equal to minus the area under the curve AB. Analogously WBC < 0, WCD > 0 and WDA > 0.
Thus the total work is the closed curve line integral W = −

∮
ABCDA

PdV , or the area of the enclosed
figure ABCDA and with the above inequalities W < 0, such that the indicated process direction indeed
is in agreement with the a process doing net work on the environment. The process directions for the
other diagrams also follow from these considerations.

2Explanation of the shape of BC in the P − V diagram. Adiabatic and reversible, so dU = −PdV . Perfect

gas, so 3
2
nRdT = −nRT dV

V
, or CV

nR

∫
dT
T

= −
∫

dV
V

, such that CV
nR

ln T2
T1

= − ln VC
VB

. Defining cv ≡ CV
nR

this re-

sults in VB
VC

=
(

T2
T1

)cv
=
(

PCVC
nR

nR
PBVB

)cv
, such that PC

PB
=
(

VB
VC

) cv+1
cv . For the chosen point B we find dPC

dVC
=

−PBV
cv+1
cv

B
cv+1
cv

(
1

VC

) cv+1
cv

+1
. As cv ≥ 3

2
, the slope of the adiabat becomes less negative for increasing VC .
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(c) A → B: V increases;
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T

P

D

T

T
2

1

A

B

C

(d) A → B: T constant;P
decreases B → C: T de-
creases; P decreases
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(e) A → B: T constant;S
increases B → C: S con-
stant; T decreases
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(f) A → B: U constant;S
increases B → C: S con-
stant; U decreases
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(g) A→ B: V increases; S
increases B → C: S con-
stant; V increases
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(h) A → B: T const.; H
const. B → C: T de-
creases; H decreases
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