Solutions Exercise Classes 6 Physical Chemistry 1 2021/2022

Exercise 19

a) Per mole of oxidized glucose 38 mol ATP is formed. If we assume that the energy delivered by the
combustion is fully stored in ATP and also completely released during hydrolysis, we find for the
efficiency under biological standard conditions (AG|pr = W/, the maximal non-volume work)
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@ = delivered energy  38A,q,G®(ATP)  38-(—30) kJ/mol
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b) The complete combustion reaction for glucose is
CeH1206(s) + 602(g) — 6CO2(g) + 6Ho0(1).
Under the given conditions the reaction Gibbs free energy for combustion of glucose is
AcompG(gluc) = A.G® + RTIn Q.

N.B. @ is now the reaction quotient defined with respect to the biological standard conditions
and thus has a different value than when @ is defined with respect to thermodynamic standard
conditions.

If we assume that the water is present abundantly, so low concentrations of the solutes, we can
assume that ag,o = 1 and we find for the reaction quotient (P® = P® =1 bar)

Pco, 6 6
( PO ) (5.3-1072)
= 5 = 5 = 0.0747, such that
[gluc] (@) 5.6-102(0.132)
o PO

A compG(gluc) = —2880 - 10° + 8.314 - 3101n 0.0747 kJ /mol = —2887 kJ /mol.

This value does not deviate much from the reaction energy under standard conditions.
¢) The reaction Gibbs free energy for the hydrolysis of ATP under physiological conditions becomes
ApyarG(ATP) = A,.G® + RTInQ, in which

@ now has to be expressed with respect to the biological standard, or (we assume again that the
activities can be replaced by molar concentrations)
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Q= [ATP] - T10-1 =10 such that
[ATP]® 1

ApyarG(ATP) = —30-10° 4+ 8.314 - 310 - In (10~ **) = —56 kJ /mol.
The efficiency for physiological conditions thus becomes

38 (—56) kJ/mol

oS8T kdjmol | T4 o m=T4%

d) The efficiency of an ideal (reversible) heat engine at the given temperatures is given by

T, 873
—1-e 12 55 — 55 %.
K T, 1923 T <

The efficiency of the biological process is therefore significantly higher than that of an ideal diesel
engine. The important difference is that for a diesel engine the heat must be transformed into



(mechanical) work. The second law of thermodynamics tells us that this is never completely possible,
unless the temperatures T3, and T, are infinitely far apart.

The biological process transforms heat in the form of A,.G directly into chemical energy in ATP,
at the same temperature. Nevertheless, the second law of thermodynamics also plays a role there.
The entropy of the starting material (glucose) and of the ATP will be different; that difference is
already taken into account in the different Gibbs free energies for the combustion of glucose and for
the hydrolysis of ATP. The transformation of the stored energy into mechanical energy, for example
during a muscle contraction, will again lower the efficiency due to losses.

Exercise 20

a) We assume that the temperature in the deep-cold chamber remains constant. The constant leakage
heat then flows from the surroundings into the system and is absorbed at the low temperature
isotherm of the Carnot-engine at T = 250 K. So Q2 = |Qk*| > 0.

The Carnot-engine drops a larger amount of heat (; per minute in the surroundings at the higher
temperature 17, so Q1 < 0.

We can determine the cycle direction by realizing that the Carnot-engine must release net heat
(Q = Q1 + Q2 < 0) to cool the chamber. For a circular process it holds that AU = 0 such that
W = —Q > 0. So we have to do work on the system to keep the chamber at temperature T5.
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(a) The heat flow in and around the (b) The corresponding Carnot-cycle;
freezer T1 =300 K and T = 250 K

b) @ = 0 for the adiabats AD and CB, such that there AU = W. For a perfect gas the internal energy
is only dependent on T'; e.g. U = %nRT for an atomic perfect gas and, more general, U = CyT
for a molecular perfect gas, with Cy independent of T, P and V. ! Thus AU and therefore W
is only determined by the initial and final temperatures. Wap = U(Tp) —U(Ta) = Cy(T> — T1)
and Wep = Cy(Th — T3), such that Wap + Wep = 0. In other words, the net work for the two
adiabats is equal to zero.

Thus the total work W of the Carnot-cycle is only determined by the isotherms. Since for the total
circular process AU = 0 applies, the work is given by W = —Q = —(Q1 + Q>)

c) For a Carnot-engine it is derived that (Atkins Justification 3A.1):

@ _ T
Q2 T

1This might seem confusing. We defined two types of heat capacities: Cy = <g—¥>v and Cp = (‘Z—?)P. As for perfect
gases U is (linearly) dependent on T and the same holds for H = U + PV = U 4+ nRT, both Cy and Cp are independent
of T, P and V and Cp = Cy + nR. So, for perfect gases we can use Cy to determine U(T) and Cp to determine H(T') for
any process whether or not at constant V or P.



For the Carnot-engine we found in a) Q = Q%" = 10kJ/min, such that

Q1 = —3%10-10% = —12 kJ/min.

According to b) the work per minute is W = —(Q1 + Q2) = —(—12 + 10) - 103 = 2 kJ /min.

This is positive work, done on the Carnot-engine as part of the system. This net amount of work
will have to be delivered during the compression and expansion of the gas.

For this question the choice for the definition of efficiency is important.

The Carnot-process has a limited efficiency due to the second law of thermodynamics. The second
law (according to Clausius) states that it is impossible to (as only result) withdraw an amount of
heat from a reservoir and completely transfer it to a reservoir with a higher temperature, without
doing work. For the Carnot-cycle of the freezer this is expressed in the work being done which
ensures that more heat is dropped in the environment at 77 than is absorbed at T5. The difference
is equal to the work. The efficiency of the Carnot-cycle in a freezer is the quotient of the useful
(withdrawn) heat and the work that is required for that ncarnot = ‘\%I‘ = 129'110033 =5, or 500 %.
This is more than 100 %! This appears strange, but apparently it does not take a lot of energy
(work) to transport a certain amount of heat to a higher temperature. However, the fact is that the
larger the temperature difference, the more energy it costs to transport the heat, since (use again
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such that for 17 > 275 we find Nogrnot < 1.

Note the difference compared with the reverse engine, which has an efficiency npeatengine = N%I < 1.
For the freezer we could even use the heat that is dumped at T} and now is considered to be lost,
for other useful purposes.

In the Carnot-cycle no energy is lost since W = —(Q1 + Q2).

1. The deep-cold chamber

First we establish that there is no net heat flow in or out of the system (the chamber) (QY%* = —Q,),
such that AS = 0 for the system.

2. The Carnot engine

S is a state function, so for any cyclic process f dScaernot = 0.

We also find this result by looking at the four process steps. The entire Carnot-process (as second
system) is reversible or Q"¢V = @ for all steps.

For the adiabates Q@ = 0 such that also there AS = 0.

For the isotherms: AScqrnot,in = %2 = 1%'5183 = 40 J/Kmin, or an entropy increase, which is
compensated by AScarnot,out = %1 = _1326303 = —40 J/Kmin.

So AScarnot = f dScarnot = 0, as for any cyclic process, whether it is run reversibly or irreversibly.
3. The surroundings
The surroundings absorb heat at T as a consequence of the work done, such that ASgyr in = =7— =

T
_g L = 123'0183 = 40 J/Kmin. However, at the same time heat is absorbed from the surroundings

Qiear and transferred to the Carnot-engine without losses. This heat absorption also occurs at 17,
such that ASsyr out = %jmh = 7TQI2 = _1300'303 = —33.3 J/Kmin. So the net change in entropy is
ASgyr = 6.7 J/Kmin.

4. Total

The total entropy change ASir = AS + AScarnot + ASsur = 6.7 J/Kmin, which is positive and
therefore the process runs spontaneously. This is the case because we added the Carnot cycle as an
engine with the work W as a kind of fuel. Without the Carnot engine the only change in S would
be the result of Qeqk, heating up the chamber until 7> = T7. The supplied work is required to have
the freezer running.




g) Firstly, the efficiency is determined by the Carnot-process, see e), if we assume that the cooling
process proceeds reversibly. Besides that, there are losses that are not related to the (ideal) Carnot-
process, such as heat leakage at imperfect adiabats, the friction in the pump and electrical losses in
the electrical motor driving the pump. If the cooling power of the Carnot-engine is regulated with a
thermometer then the heat leakage can be compensated exactly, such that a constant temperature
is maintained in the freezing chamber. We can denotTe t{he efficiency as a consequence of the friction

w

in the pump and the electrical losses with 1pymp = Wy’ in which Wpymp represents the electrical
pump

work that is used in the pump motor. The total efficiency then becomes

g @l el
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h) For an efficiency of 50 % n = 0.5. The loss is |Q2| = 10 kJ/min. such that the electrical power the
freezer consumes is determined by

_ Woump| _ Q2| _ 10-10%J
At nAt 0.5 60 s

P = 333 Watt.

Exercise 21

First we construct the P — V' diagram (see diagram (a)). The isotherms obey P = "R%T (perfect gas)
and thus have the form of the function P(V) = <e2snt = The exact shape of the adiabats (dQ = 0)
is more difficult to determine. For those interested we explain below, as an example, that the slope of
the adiabat B? becomes less negative for increasing V. 2 For the P — T diagram we ﬁnd1 analogously
Coy Cy
% = (%) ! , with increasing slope in the direction of T; according to % = Po (T%) i (co+1)T7".
We find the shape of the curved isotherms in the S — V diagram as follows. For the isotherms d7" = 0
and thus for our perfect gas dU = 0, or TdS — PdV = 0. So the slope of those isotherms in the S — V
diagram becomes % = % = % = %. So the slope becomes smaller with increasing V. The slope in
the T'— H diagram is Cp = Cy + nR = nR(c, + 1).

To determine the direction of the cyclic process we consider the following. W = Wyp + Wgpeo + Wep +
Wpa. For the direction indicated in the P—V diagram (all processes are reversible) Wap = — ff PAV <
0 and equal to minus the area under the curve AB. Analogously Wgo < 0, Wep > 0 and Wp4 > 0.
Thus the total work is the closed curve line integral W = — ¢ apopa PdV, or the area of the enclosed
figure ABCDA and with the above inequalities W < 0, such that the indicated process direction indeed
is in agreement with the a process doing net work on the environment. The process directions for the

other diagrams also follow from these considerations.

2Explanation of the shape of BC in the P — V diagram. Adiabatic and reversible, so dU = —PdV. Perfect
gas, so %anT = 7nRT%, or %f% = — %, such that %ln% = —In %' Defining ¢, = % this re-
. o co+l
sults in % = (%) = (ngc P2§B> , such that g—g = (%) “v . TFor the chosen point B we find % =
cy cotl g
—PgVyg C”Cil (%) cv . As ¢y > %, the slope of the adiabat becomes less negative for increasing V.
v
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