Solutions Exercise Classes 7 Physical Chemistry 1 2021/2022

Exercise 22

a) Since S is a state function we can choose a reversible process, so dW = —P,,;;dV = —PdV. For an
isothermal process and a perfect gas it holds that AU = 0 such that Q@ = —W, so dQ,, = PdV.
The result for the entropy change is AS = &? % = f‘Zz £V — \‘/:2 nBTAV — nR1n % =nRIn?2.

b) The Boltzmann definition of entropy is S = kIn W in which W is the number of realization pos-
sibilities of the system, that is, the number of micro states. Even though we expand isothermally,
the distribution of the molecules over the energy levels changes. This is because the energy levels
of the particles depend on the volume.

Since nR = Nk, in which N is the number of particles, we can write the result of part a)
as AS = Nkln2 = kIn2V. In terms of the Boltzmann definition this implies that AS =
kInWy —klnWy = kln%, SO kln% =kIn2V, or %’;‘ = 2N,

We can interpret this result as twice the amount of realization possibilities per particle in the system;
it is tempting to argue that twice the number of positions can be occupied per particle due to the
volume of the final state being twice as large. For N particles there are thus 2V as many position
possibilities. In other words, in this reasoning for the term ‘number of realization possibilities’ we
have to account for not only the number of possibilities to realize the distribution of particles over
the energy states, but also the position possibilities. From a quantum mechanical point of view,
this is already covered by the volume dependence of the energy levels (see Study Guide, p.26, eq
(130)).

Exercise 23
a) There are n amino acids and thus (n — 1) peptide bonds in the polypeptide chain. Every peptide

bond has two rotational degrees of freedom, the torsion angles ¢ and 1, which each have three
positions so there are 32 = 9 torsional states per peptide bond (see figure 1).

Figure 1: Completely unfolded polypeptide chain; ¢ and 1 each have 3 preferred states.

Thus for the n peptides of the entire molecule there are N, = 32(*=1 = 9(*»=1) conformations.

b) AS = klnW, — klnW,, in which the number of conformations is W,, = 1 for the folded (native)
state, whereas part a) shows that W, = N, = 32(n=1) for all unfolded states. With this we find
AS =kIn3?"=Y —klnl = kIn3%% —0=2-99%kIn3 = 218k = 3.0-10~2' J/K. This is the entropy
per molecule. The molar entropy thus becomes AS,, = N4AS = 1.8 kJ/mol K.

c¢) The torsional degrees of freedom in an ethane molecule result in an entropy gain per mol ethane of
AS =Nskln3=RIn3=9.1 J/mol K.



d)

The conformational torsional entropy per group in the molecule for the polypeptide molecule is
% = 18 J/mol K, which is twice as much as for the ethane molecule. The factor two is a

consequence of the number of torsion angles (¢ and v). The huge difference between the two cases
of part b) and c) is the result of the large difference in possible molecular conformations.

Exercise 24

a)

c)

Since we set the lowest energy level to 0, all energy levels shift up with % upH, such that ¢g =0
and €; = upH.

q= Zexp (—]:—}) =1+exp (—ﬁ)

The Boltzmann distribution results in

n; :NW (i=0,1),

such that

H
1 exp (—24 )
ng =N and n; =N T .
1+ exp (—%)

14 exp (—%)
In the figure below 3 and % are plotted for a magnetic field of 10 Tesla, for which upH =
9.27-10723 J. We see that for T — oo the distribution of both levels becomes equal to 0.5, whereas
for T'— 0 all spins are in the ground state (ng(7 = 0) = N and ny (T = 0) = 0). We also see that
if the thermal energy is equal to the magnetic energy (kT = upH), the distributions become equal

to K¢ = 0.731 and g = 0.269. The corresponding temperature is T' = ’“?CH = % =6.7T K.
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Figure 2: %¢ and ¢ for H = 10 Tesla

The average energy per electron as a consequence of the spins in the magnetic field is
exp (_ #IfTH )

1+ exp <f—“]fTH)
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Actually we have to shift this result over —% upH to go back to the original energy scale, so we find

_,U,BH 1
kT
— ~pgH.

1+ exp (— “]fTH) 2

exp (

1
<e> *iﬂBH =upH

The plot of < € > (T) is the same as the lowest line in figure 2, even though the vertical axis is
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Figure 3: The average energy ¢(T') per electron for H = 10 Tesla

multiplied by pp H and shifted over —% upH. The effect of the magnetic field is no longer noticeable
for T'— o0, since then < e >— 0

Exercise 25

a)

For a perfect atomic gas

OH

5
H=§nRT, so Cp= <8T

5) )
) =_-nR, so cp=—-R=20.79J/molK.
P2 2

Therefore A =20.79 J/molK and B =C = 0.

At T = Tyys the melt and the solid phase are in equilibrium and thus, at constant 7' and P,
ArysG =G —Gs =0, 0r ApysH — TrysAgysS =0, whereas Ar, s H # 0 and Ay, S # 0.

For a pure substance the chemical potential is equal to the molar Gibbs free energy, so Ayyop =
The Helmholtz free energy, A = U — T'S, is in equilibrium only constant during the transition if T’
and V' are constant (see Study Guide p.11). Moreover, there is also a chemical potential belonging

to the Helmholtz free energy, namely u = (@ which of course has a different value than the

on ) v, T’
oG

chemical potential y = (%)PT, that belongs to G.

The answers are therefore

— the entropy: no,
— the chemical potential (at constant T and P): yes,
— the enthalpy: no,



c)

— the Gibbs free energy: yes,

— the Helmholtz free energy: no.

At T =T,qp the melt and the vapour phase are in equilibrium and therefore
DpopG =Gy — G =0, or AyopH — TyapAyapS =0,
such that

_ AypH 98.01-10°

AyapS
P Toap 1156

= 84.78 J/molK.

The general expression for the temperature dependence of C,, is

Trus Cp(s) ApyH Tvar Cp(1) AyapH T Cplg)
S(T) = S(0 +/ P 2w dT + Zver— 4 P,
) =50 0 T Tus True T Tyap Tyap T

At the lowest temperatures the temperature dependence given in the exercise no longer holds, so
we integrate from 7" = 10 K and neglect the small contribution at the lowest temperatures. For
the molar heat capacity at 1000 K, which is below the boiling point, this results in (S(0) = 0)

Trus

1000
S(T)=0 +/ cP(8) yp 4 Brusll | ce® ar

10 Tfus Tius T

Substituting the temperature dependence of the heat capacity results in

Tius As A usH 1000 A
S(T) = / (T + B, + 05T> aT + zii + (Tl + B+ ClT) dr,
1

0 fus Tfus
or
T 1000
1 fus A H 1
S(T) = [AS InT + B,T + QCSTQ} 4 Sus? [Al InT + BT + ZCITQ]
10 qu Tfus

Finally, filling in all values from the tables of the exercise results in

S(T = 1000 K) = 208.65 + 7.0108 4 31.147 = 246.8 J/molK.



