
Solutions Exercise Classes 7 Physical Chemistry 1 2021/2022

Exercise 22

a) Since S is a state function we can choose a reversible process, so dW = −PextdV = −PdV . For an
isothermal process and a perfect gas it holds that ∆U = 0 such that Q = −W , so dQrev = PdV .

The result for the entropy change is ∆S =
∫ V2

V1

dQrev

T =
∫ V2

V1

PdV
T =

∫ V2

V1

nRTdV
V T = nR ln V2

V1
= nR ln 2.

b) The Boltzmann definition of entropy is S = k lnW in which W is the number of realization pos-
sibilities of the system, that is, the number of micro states. Even though we expand isothermally,
the distribution of the molecules over the energy levels changes. This is because the energy levels
of the particles depend on the volume.
Since nR = Nk, in which N is the number of particles, we can write the result of part a)
as ∆S = Nk ln 2 = k ln 2N . In terms of the Boltzmann definition this implies that ∆S =
k lnW2 − k lnW1 = k ln W2

W1
, so k ln W2

W1
= k ln 2N , or W2

W1
= 2N .

We can interpret this result as twice the amount of realization possibilities per particle in the system;
it is tempting to argue that twice the number of positions can be occupied per particle due to the
volume of the final state being twice as large. For N particles there are thus 2N as many position
possibilities. In other words, in this reasoning for the term ‘number of realization possibilities’ we
have to account for not only the number of possibilities to realize the distribution of particles over
the energy states, but also the position possibilities. From a quantum mechanical point of view,
this is already covered by the volume dependence of the energy levels (see Study Guide, p.26, eq
(130)).

Exercise 23

a) There are n amino acids and thus (n − 1) peptide bonds in the polypeptide chain. Every peptide
bond has two rotational degrees of freedom, the torsion angles φ and ψ, which each have three
positions so there are 32 = 9 torsional states per peptide bond (see figure 1).

Figure 1: Completely unfolded polypeptide chain; φ and ψ each have 3 preferred states.

Thus for the n peptides of the entire molecule there are Nc = 32(n−1) = 9(n−1) conformations.

b) ∆S = k lnWu − k lnWn, in which the number of conformations is Wn = 1 for the folded (native)
state, whereas part a) shows that Wu = Nc = 32(n−1) for all unfolded states. With this we find
∆S = k ln 32(n−1)−k ln 1 = k ln 32·99−0 = 2 ·99k ln 3 = 218k = 3.0 ·10−21 J/K. This is the entropy
per molecule. The molar entropy thus becomes ∆Sm = NA∆S = 1.8 kJ/mol K.

c) The torsional degrees of freedom in an ethane molecule result in an entropy gain per mol ethane of
∆S = NAk ln 3 = R ln 3 = 9.1 J/mol K.
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d) The conformational torsional entropy per group in the molecule for the polypeptide molecule is
∆S
100 = 18 J/mol K, which is twice as much as for the ethane molecule. The factor two is a
consequence of the number of torsion angles (φ and ψ). The huge difference between the two cases
of part b) and c) is the result of the large difference in possible molecular conformations.

Exercise 24

a) Since we set the lowest energy level to 0, all energy levels shift up with 1
2µBH, such that ε0 = 0

and ε1 = µBH.

q =
∑
i

exp
(
− εi
kT

)
= 1 + exp

(
−µBH

kT

)
b) The Boltzmann distribution results in

ni = N
exp

(
− εi
kT

)
q

(i = 0, 1),

such that

n0 = N
1

1 + exp
(
−µBH

kT

) and n1 = N
exp

(
−µBH

kT

)
1 + exp

(
−µBH

kT

) .
In the figure below n0

N and n1

N are plotted for a magnetic field of 10 Tesla, for which µBH =
9.27 · 10−23 J. We see that for T →∞ the distribution of both levels becomes equal to 0.5, whereas
for T → 0 all spins are in the ground state (n0(T = 0) = N and n1(T = 0) = 0). We also see that
if the thermal energy is equal to the magnetic energy (kT = µBH), the distributions become equal

to n0

N = 0.731 and n1

N = 0.269. The corresponding temperature is T = µBH
k = 9.27·10−23

1.38·10−23 = 6.7 K.
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Figure 2: n0

N and n1

N for H = 10 Tesla

c) The average energy per electron as a consequence of the spins in the magnetic field is

< ε >=
1

N

∑
i

εini =
1

N
(ε0n0 + ε1n1) =

1

N

0 · n0 + µBHN
exp

(
−µBH

kT

)
1 + exp

(
−µBH

kT

)

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Actually we have to shift this result over − 1
2µBH to go back to the original energy scale, so we find

< ε > −1

2
µBH = µBH

exp
(
−µBH

kT

)
1 + exp

(
−µBH

kT

) − 1

2
µBH.

The plot of < ε > (T ) is the same as the lowest line in figure 2, even though the vertical axis is

-5e-23

-4.5e-23

-4e-23

-3.5e-23

-3e-23

-2.5e-23

-2e-23

-1.5e-23

-1e-23

-5e-24

 0

 10  20  30  40  50  60  70  80  90  100

en
er

gi
e 

(J
)

T(K)

Figure 3: The average energy ε(T ) per electron for H = 10 Tesla

multiplied by µBH and shifted over − 1
2µBH. The effect of the magnetic field is no longer noticeable

for T →∞, since then < ε >→ 0

Exercise 25

a) For a perfect atomic gas

H =
5

2
nRT, so CP =

(
∂H

∂T

)
P

=
5

2
nR, so cP =

5

2
R = 20.79 J/molK.

Therefore A = 20.79 J/molK and B = C = 0.

b) At T = Tfus the melt and the solid phase are in equilibrium and thus, at constant T and P ,
∆fusG = Gl −Gs = 0, or ∆fusH − Tfus∆fusS = 0, whereas ∆fusH 6= 0 and ∆fusS 6= 0.
For a pure substance the chemical potential is equal to the molar Gibbs free energy, so ∆fusµ =
∆fusGm = ∆fusG/n = 0.
The Helmholtz free energy, A ≡ U − TS, is in equilibrium only constant during the transition if T
and V are constant (see Study Guide p.11). Moreover, there is also a chemical potential belonging
to the Helmholtz free energy, namely µ =

(
∂A
∂n

)
V,T

, which of course has a different value than the

chemical potential µ =
(
∂G
∂n

)
P,T

, that belongs to G.

The answers are therefore

– the entropy: no,

– the chemical potential (at constant T and P ): yes,

– the enthalpy: no,
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– the Gibbs free energy: yes,

– the Helmholtz free energy: no.

c) At T = Tvap the melt and the vapour phase are in equilibrium and therefore

∆vapG = Gg −Gl = 0, or ∆vapH − Tvap∆vapS = 0,

such that

∆vapS =
∆vapH

Tvap
=

98.01 · 103

1156
= 84.78 J/molK.

d) The general expression for the temperature dependence of Cp is

S(T ) = S(0) +

∫ Tfus

0

CP (s)

T
dT +

∆fusH

Tfus
+

∫ Tvap

Tfus

CP (l)

T
dT +

∆vapH

Tvap
+

∫ T

Tvap

CP (g)

T
dT.

At the lowest temperatures the temperature dependence given in the exercise no longer holds, so
we integrate from T = 10 K and neglect the small contribution at the lowest temperatures. For
the molar heat capacity at 1000 K, which is below the boiling point, this results in (S(0) = 0)

S(T ) = 0 +

∫ Tfus

10

cP (s)

T
dT +

∆fusH

Tfus
+

∫ 1000

Tfus

cP (l)

T
dT.

Substituting the temperature dependence of the heat capacity results in

S(T ) =

∫ Tfus

10

(
As
T

+Bs + CsT

)
dT +

∆fusH

Tfus
+

∫ 1000

Tfus

(
Al
T

+Bl + ClT

)
dT,

or

S(T ) =

[
As lnT +BsT +

1

2
CsT

2

]Tfus

10

+
∆fusH

Tfus
+

[
Al lnT +BlT +

1

2
ClT

2

]1000

Tfus

.

Finally, filling in all values from the tables of the exercise results in

S(T = 1000 K) = 208.65 + 7.0108 + 31.147 = 246.8 J/molK.
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