
Solutions Additional Exercises Physical Chemistry 1 2021/2022

Exercise add 1

The reaction consists of two equilibria CO(g) + H2(g) � H2CO(l) and H2CO(l) � H2CO(g).
For the first reaction ∆rG

� = 28.95 kJ/mol. For the second reaction it holds that (perfect gas and
a(l) ≈ 1).

K(vap) =
a(g)

a(l)
=

P

P�
.

From the equilibrium condition for that second reaction we can find the standard Gibbs free energy of
evaporation ∆rG

�(H2CO(l) � H2CO(g)) = ∆vapG
�(H2CO(l)) (use P� = 1 bar ≈ 750 Torr)

∆vapG
� = −RT lnK(vap) = −8.314 · 298 ln

1500 Torr

750 Torr
= −1.72 kJ/mol.

So for the total reaction, the standard reaction Gibbs free energy is

∆rG
� = 28.95− 1.72 = 27.23 kJ/mol,

resulting in the equilibrium constant of that reaction given by

K = exp

(
−∆rG

�

RT

)
= exp

(
−27.23 · 103

8.314 · 298

)
= 1.69 · 10−5

Exercise add 2

The chemical equilibrium reaction is CaCO3(s) � CaO(s) + CO2(g). Using the assumptions of the
exercise we can set the condition for which CaCO3(s) will dissociate completely in terms of the equilibrium
constant at P = P� being equal to one: K(P�) = 1.
The equilibrium constant is given by (use aCaCO3(s) ≈ aCaO(s) ≈ 1)

K =
aCaO(s)aCO2(g)

aCaCO3(s)
≈ aCO2(g) =

PCO2

P�
= 1,

∆rG
� is defined at P = P�, for a given temperature, so ∆rG

� is independent of pressure, but still
dependent on the temperature T .
In the tables in Atkins we can find the standard formation Gibbs free energies, ∆fG

�, at T = 298 K,
which will differ at other temperatures.
∆rG

� = −RT lnK ≈ −RT ln 1 = 0, so ∆rH
� − T∆rS

� ≈ 0.
Usually the temperature dependence of ∆rH

� and ∆rS
� is rather weak as compared to ∆rG

�, that
is why we use the assumption that the temperature dependence of both ∆rH

� and ∆rS
� is negligible.

Using the tables in Atkins we find

∆rH
� = ∆fH

�(CaO(s))+∆fH
�(CO2(g))−∆fH

�(CaCO3(s)) = −635−393.5+1207 = 178.5 kJ/mol.

To determine ∆rS
� we use the standard molar entropies in the tables:

∆rS
� = S�

m(CaO(s)) + S�
m(CO2(g))− S�

m(CaCO3(s)) = 40 + 214− 93 = 161 J/molK.

Using these values we find for the estimate of the decomposition temperature

T =
∆rH

�

∆rS�
=

178.5 · 103

161
= 1109 K
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Exercise add 3

PV = nRT

(
1 +

B

Vm

)
with B = −21.7 cm3mol−1. The term carrying B discriminates the gas from a perfect gas. This term
discribes the correction to the equation of state, stemming from the finite size of the atoms. As a result
of this finite size, the atoms experience a smaller volume V , implying a negative value for B.
For this non-perfect gas we cannot use the perfect gas expressions for the internal energy and the heat
capacity.

a) Both processes start with a volume V1 = 1.0 l.
We use the equation of state to find the starting pressure Vm = V/n):

P1 = nRT1

V1

(
1 + B

Vm,1

)
= 2.0·8.314·300

1.0·10−3

(
1− 21.7·10−6

1.0·10−3/2

)
= 4.772 · 106 N/m2.

b) Because we do not have an expression for CP to find ∆H, we use the definition of enthalpy:
H = U + PV , so dH = dU + PdV + V dP .

The difference we have to determine is ∆H −∆U =
∫ V2

V1
PdV +

∫ P2

P1
V dP .

At constant volume (V2 = V1) we find ∆H −∆U = V1

∫ P2

P1
dP = V1 (P2 − P1).

We use the equation state once more to find the final pressure:

P2 = nRT2

V1

(
1 + B

Vm,1

)
= 2.0·8.314·350

1.0·10−3

(
1− 21.7·10−6

1.0·10−3/2

)
= 5.567 · 106 N/m2, resulting in

∆H −∆U = 1.0 · 10−3 ·
(
5.567 · 106 − 4.772 · 106

)
= 795 J.

At constant pressure we obtain ∆H −∆U = P1

∫ V2

V1
dV = P1 (V2 − V1).

The final volume V2 follows by rewriting the equation of state:

V 2 − nRT
P V − nRT

P nB = 0, so V = nRT
2P ±

1
2

√(
nRT
P

)2
+ 4

(
n2RT
P

)
B

(the negative solution gives no real value for the volume). On substituting the values, we find

V2 = nRT2

2P1
+ 1

2

√(
nRT2

P1

)2

+ 4
(
n2RT2

P1

)
B = 2.0·8.314·350

2·4.772·106 + 1
2

√(
2.0·8.314·350

4.772·106

)2 − 4
(

2.02·8.314·350
4.772·106

)
· 21.7 · 10−6.

This results in V2 = 1.175 · 10−3 m3, so
∆H −∆U = P1 (V2 − V1) = 4.772 · 106 ·

(
1.175 · 10−3 − 1.0 · 10−3

)
= 835 J.

c) For a perfect gas the inital pressure would be P1 = 4.99 · 106 N/m2.
For a perfect gas we find for both processes, at a final volume V2 = 1.17 · 10−3 m3,
∆H −∆U = nR∆T = 2.0 · 8.31 · (350− 300) = 831 J.

Exercise add 4

a) The (external) resistance is R = Eterm

I = 19
2.5 = 7.6 Ω. see figure 1.

b) Ri is the internal resistance that causes a decrease of the terminal voltage Eterm = EEMF − IRi ⇒
Ri = EEMF−Eterm

I = 20−19
2.5 = 0.40 Ω;

c) The transferred charge per mole of electrons is ∆q = 1 F(araday) = NAe = 9.6485 · 104 C (e is the
elementary charge).
As long as the process is isochoric (dV = 0) there is no mechanical (volume) work. Besides, for such
an electrochemical process even under isobaric conditions (dP = 0) we can assume that there is no
volume change so that there is no mechanical (volume) work done. So the only work is electrical
and at (the given) constant terminal voltage.
If we choose the battery as system, then the system does (electrical) work on the surroundings (the
resistance R), or W < 0.
In that case W = −

∫
Etermdq = −Eterm

∫
dq = −Eterm∆q = −19 · 96485 = −1.83 MJ/mol.

2



R iR i

EEMF

Battery/system

R

Battery/system

I
termE

Figure 1: The battery is the system; if there is no external resistance, then the terminal voltage is equal
to the maximum voltage of the battery EEMF ; if a resistance R is connected the terminal voltage drops
with an amount of IRi to a value of Eterm.

If we take the external resistance as system then this work is done by the surroundings (battery)
on the resistance and is W = 1.83 MJ/mol, so positive.

d) Moreover, if the process proceeds reversibly with an infinitely high external resistance, the process
indeed takes infinitely long, but Eterm = EEMF , since the current is infinitely small. The work
then becomes W = −

∫
EEMFdq = −EEMF∆q = −20 · 96485 = −1.93 MJ/mol.

e) The maximum terminal voltage is EEMF = 20 V, so the maximum work per mole of transferred
electrons is W = −

∫
EEMFdq = −EEMF∆q = −20 · 96485 = −1.93 MJ/mol, or the work in case

the battery delivers current reversibly.

Of course there is a practical limit here, since the EEMF is only realized for (very) small currents,
so for a very small amount of power per time unit.

Exercise add 5

a) We assume that at the standard temperature (298 K) the water is formed in its liquid state, whereas
oxygen and hydrogen are present in gaseous form, each with standard pressure. The cell reaction
then becomes

H2(g) +
1

2
O2(g) � H2O(l),

with as standard reaction energy (∆fG
�(H2(g)) = ∆fG

�(O2(g)) = 0)

∆rG
� = ∆fG

�(H2O(l))−∆fG
�(H2(g))− 1

2
∆fG

�(O2(g)) = ∆fG
�(H2O(l)) = −237.13 kJ/mol.

The reaction quotient Q is given by (P (O2(g)) = P (H2(g)) = P� and a(H2O(l)) = 1)

Q =
a(H2O(l))

a(H2) · a 1
2 (O2)

=
a(H2O(l))(

P (H2)
P�

)(
P (O2)
P�

) 1
2

= 1.

In this reaction two electrons are transferred (ν = 2 becomes clear from the half reaction H2(g) �
2H+ + 2e−). The EMF of such a cell then is

E = E� − RT

νF
lnQ = E� = −∆rG

�

νF
=

237.13 · 103

2 · 96485
V = 1.23 V.
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b) The standard reaction energy now becomes

∆rG
� = ∆fG

�(H2O(g)) = −228.57 kJ/mol.

The reaction quotient is still Q = 1 since all partial pressures are equal to P�, such that

E = E� − RT

νF
lnQ = E� = −∆rG

�

νF
=

228.57 · 103

2 · 96485
V = 1.18 V.

c) We use the same design. For this cell the reaction is

C4H10(g) +
13

2
O2(g) � 4CO2(g) + 5H2O(l),

with as standard reaction Gibbs free energy

∆rG
� = 4∆fG

�(CO2(g)) + 5∆fG
�(H2O(l))−∆fG

�(C4H10(g)) =

−4 · 394− 5 · 237 + 17.0 = −2744 kJ/mol.

We find the number of electrons that is transferred during this reaction as follows. If the H+-ions
are responsible for the transport of charge between the electrodes in the cell, then one of the half
cell reactions is

13

2
O2(g) + 26e− + 26H+(aq)→ 13H2O(l)

Apparently, a part of the formed water is then used for the other half reaction:

C4H10(g) + 8H2O(l)→ 4CO2(g) + 26e− + 26H+(aq).

We find the total reaction as the sum of the first (reduction) and the second (oxidation) half reaction.
So the number of transferred electrons is apparently ν = 26, such that we find

E� = −∆rG
�

νF
=

2744 · 103

26 · 96485
V = 1.09 V.

d) The alternative design has an oxygen-ion electrolyte with as cathode reaction

13 O2 + 52 e− → 26 O2−

and as anode reaction

8 CO2 + 10 H2O + 52 e− → 2 C4H10 + 26 O2−.

Naturally, the total reaction remains the same, just like the number of transferred electrons. Thus
this cell supplies the same EMF under standard circumstances as the one from part c).

e) For a reversible process at constant temperature and pressure ∆rG = We and the efficiency of the
fuel cell is thus η = 100 %, irrespective of the temperature and the pressure (∆rG is the reaction
Gibbs free energy at that temperature and pressure).
The cell can only do external work reversibly at infinitely small current I, since then the internal
resistance is negligibly small.

f) For a current I through a resistance R the dissipation (electrical energy that is completely trans-
formed into heat) is determined by the power P = I2R; cf. exercise 4. The electrical work done per
time unit ∆t on the external resistance then is WL = I2RL∆t, whereas the work done per time unit
∆t on the internal resistance is equal to Wi = I2Ri∆t, in which WL + Wi = ∆rG. The efficiency
therefore becomes

η =
WL

∆rG
=

WL

WL +Wi
=

I2RL∆t

I2RL∆t+ I2Ri∆t
=

RL
RL +Ri

=
10

11
.

So in practice the internal resistance Ri of the cell decreases the efficiency. In general the internal
resistance increases with the current I and therefore it is not a normal ’ohmic’ resistance. Ri has
different causes:
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- The resistance of the electrolyte (membrane) for the ion transport. If the diffusion of ions
through the membrane is not fast enough for larger currents I a concentration gradient of ions
arises, resulting in a potential difference over that gradient (called polarisation), that decreases
the terminal voltage (and thus the efficiency).

- The redox reaction can have too slow kinetics also on the electrodes, due to which again a
gradient arises in the ion density around the electrode; The consequence is again a polarisation
against the EMF, or a decrease in efficiency. Using a catalyst as electrode can improve the
kinetics.

- Transport of unwanted ions through the membrane (e.g. O2− in part a)) causes a current
leakage, that does not contribute to the external electrical work. Strictly speaking a leakage
does not affect the internal resistance.

Exercise add 6

a) At 75◦C there is a (dynamic) equilibrium between the folded and the unfolded state such that at
that constant temperature and pressure 0 = dG = dH − TdS − SdT = dH − TdS, such that

∆H = T∆S, or ∆S = ∆H
Tunfold

= 509·103

348.2 = 1.46 kJ/molK.

b) The unfolding process at 105 ◦C is irreversible (spontaneous). If we add two reversible isobars
between 105 ◦C and 75 ◦C to the already reversible unfolding process at 75 ◦C, then we find the
following diagram. So we choose the processes 1, 2 and 3 to be reversible.

75  C75  C

105  C

P P

T,P

T,P

1 3

folded unfolded

unfoldedfolded

2

spontaneouso

o o

105  C
o

c) ∆cP = cP (unfolded) − cP (folded) = 6.28 kJ/molK and we consider it to be independent of T
between 75 ◦C and 105 ◦C.
H is a state function so ∆H is independent of the path. Obviously, we choose the path 1-2-3 as
reversible alternative for the spontaneous unfolding process.
For (reversible) isobars dH = dQ+ V dP = dQ, such that dH = cPdT .
•Process 1 is isobaric, so dH1 = cP (folded)dT , such that ∆H1 = cP (folded) · (75 − 105). (cP is
independent of temperature and of course we can express ∆T in both K and ◦C).
•Process 3 is isobaric, so dH3 = cP (unfolded)dT , such that ∆H3 = cP (unfolded) · (105− 75).
•Process 2 is isothermal and ∆H2 = ∆Hunfold(75 ◦C) = 509 kJ/mol.
Therefore ∆Hunfold(105◦C) = cP (folded) · (75− 105) + cP (unfolded) · (105− 75) + 509 · 103 =
(105− 75)∆cP + 509 · 103 = 30 · 6.28 · 103 + 509 · 103 = 697.4 kJ/mol.

d) S is a state function, so ∆S is also independent of the path.
•Process 1 is isobaric, so dQ = dQP = dH and reversible, hence dS = dQrev

T = dH
T = CP dT

T .

The temperature changes, so ∆S = cP (folded)
∫ 348.2 K

378.2 K
dT
T = cP (folded) ln 348.2

378.2 .

•Process 3 is reversible and isobaric, so ∆S = cP (unfolded)
∫ 378.2 K

348.2 K
dT
T = cP (unfolded) ln 378.2

348.2 .
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•Process 2 is isothermal and reversible, so ∆S = Qrev

T2
= 509·103

348.2 = 1462 J/mol.

So ∆S = cP (folded) ln 348.2
378.2 + cP (unfolded) ln 378.2

348.2 + 1462 = ∆cP ln 378.2
348.2 + 1462 =

6.28 · 103 ln 378.2
348.2 + 1462 = 519.0 + 1462 = 1981 J/molK.

e) The heat during the isobaric process, ∆Hunfold(105◦C), is delivered to the surroundings.

∆Senv = −Q
Tenv

=
−∆Hunfold(105◦C)

Tenv
= −697.4·103

378.2 = −1844 J/molK.
The second law of thermodynamics requires that ∆Stot > 0 for a spontaneous process.
∆Stot = ∆S + ∆Senv = 1981− 1844 = 137 J/molK.
Thus the total entropy increases, such that the process proceeds indeed spontaneously.

Exercise add 7

The equilibrium constant is given by (we denote ∆G = ∆rG, etc. for the sake of simplicity)

∆G� = −RT lnK or lnK = −∆H�

RT
+

∆S�

R
.

For a temperature independent change of the reaction enthalpy and entropy, the relation between lnK

and 1
T is a straight line in a Van ’t Hoff-plot with as slope −∆H�

R and as offset ∆S�

R . For an isobaric
exothermic reaction ∆H� < 0 while for an endothermic reaction ∆H� > 0.
This results in figure 2 below

a) lnK is positive for all T , so K > 1 for all T .

b) For 1
T > 1

To
or T < To one finds K > 1, while 0 < K < 1 for T > To,

N.B.: To should not be confused with standard conditions. To is the temperature at which the
equilibrium constant K = 1. Since ∆G� = −RT lnK = 0 at that temperature, ∆H� and −To∆S�

must exactly compensate each other, there.

c) For T < To one finds 0 < K < 1, wile K > 1 for T > To.

d) 0 < K < 1 for all T .

K is the equilibrium constant, or K = Qeq. Outside equilibrium Q 6= K; in case Q < K the reaction
proceeds to the right and when Q > K the reaction proceeds to the left.

Exercise add 8

We work isothermally so the temperature does not change.
The cell supplies current until the concentrations in the half cells are such that the cell voltage has become
equal to zero; this is the equilibrium situation for the cell.
Only the hydroxide molalities play a role here. From the chemical equations from part 18a) it becomes
clear that during current supply every decrease of the hydroxide molality in the anode half cell will result
in an equal increase of the hydroxide molality in the cathode half cell.
To make the calculation not too complicated we will assume that, given the low concentrations of hydrox-
ide ions, the consumption of H2O in the cathode compartment has a negligible influence on the molality
of the hydroxide.

a) We start with molalities bOH−,c = bOH−,a = b0. So at every moment during discharge

bOH−,c = b0 + ∆b and bOH−,a = b0 −∆b,

which, using the Nernst-equation, results in a cell voltage given by

E = E�
c − E�

a −
RT

F
ln
γOH− (b0 + ∆b)

γOH− (b0 −∆b)
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In equilibrium the cell voltage is equal to 0 V; in other words

0 = 1.30− 8.315 · 298

96485
ln

(b0 + ∆b)

(b0 −∆b)
= 1.30− 2.568 · 10−2 ln

(b0 + ∆b)

(b0 −∆b)
,

such that we find

(b0 + ∆b)

(b0 −∆b)
= exp

1.30

2.568 · 10−2
= 9.67 · 1021.

From this it follows that

∆b = b0
9.64 · 1021 − 1

9.64 · 1021 + 1
≈ b0.

So in equilibrium we find for the molalities of the hydroxide bOH−,a ≈ 0 and bOH−,c ≈ 2b0.

b) The cell potential decreases in time so that also the current and the delivered power decrease.
This is approximately an exponential function in time. The cell voltage at time t = 0 is equal to
E0 = E� = 1.30 V.
The delivered electrical power at time t is given by

P (t) = E(t)I(t) =
E(t)2

Rtot
=

(
E0 exp

[
− 2RT
F 2Rtot

b�

b0
t
])2

Rtot
.

The total delivered electrical work is thus

W =

∫ ∞
0

P (t)dt =

∫ ∞
0

(
E0 exp

[
− 2RT
F 2Rtot

b�

b0
t
])2

Rtot
dt =

E2
0

Rtot

∫ ∞
0

exp

[
−2

2RT

F 2Rtot

b�

b0
t

]
dt,

K

0 /T

ln

−∆

∆

H /R
o

S /R
o

1

(a) ∆H� < 0 and
∆S� > 0

K

/T

0 /T

ln

1 o

1

−∆H /R
o

S /R
o

∆

(b) ∆H� < 0 and
∆S� < 0

/T

/T

K

0 1

1 o

ln

−∆H /R
o

∆S /R
o

(c) ∆H� > 0 and
∆S� > 0

/T

K

0 1

ln

∆

−∆

S /R
o

H /R
o

(d) ∆H� > 0 and
∆S� < 0

Figure 2: The four situations for K(T ) in a Van ’t Hoff-plot.
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or

W =
E2

0

Rtot

[
−F

2Rtot
4RT

b0
b�

exp

(
− 4RT

F 2Rtot

b�

b0
t

)]∞
0

=
E2

0F
2Rtot

Rtot4RT

b0
b�

=
E2

0F
2

4RT

b0
b�
.

Substituting all values results in (use the result of exercise 18e)

W =
1.302 · 964852 · 0.1
4 · 8.314 · 298 · 1

= 1.59 · 105 J.

This value is independent of the resistance, since we determined the total power, including the
energy dissipated in the cell which latter is delivered to the surroundings as heat.

c) The heat that is generated in the battery must be transfered to the surroundings as a result of the
isothermal conditions. This negative heat Q is thus equal to the electrical power Pi that has been
dissipated in the internal resistance Ri of the battery. The voltage over the internal resistance at

every moment is given by Ei(t) = E(t) − I(t)RL = E(t)
(

1− RL

Rtot

)
(see Study Guide, p.20), such

that we find

Q = −
∫ ∞

0

Pi(t)dt = −
∫ ∞

0

Ei(t)
2

Ri
dt = −

(
1− RL

Rtot

)2

Ri

∫ ∞
0

E(t)2dt.

If we use the result of the integral from the previous part we find

−

(
1− RL

Rtot

)2

Ri

E2
0F

2Rtot
4RT

b0
b�

= −E
2
0F

2

4RT

b0
b�

Ri
Rtot

= −W Ri
Rtot

= −1.59 · 105 1

11
= −1.45 · 104 J.

d) We use the result of the previous part, from which it becomes clear that the fraction Ri

Rtot
of W

should be considered as loss, so that the fraction 1− Ri

Rtot
= RL

Rtot
of W is useful (there is no further

work done). The efficiency then is

η =
WL

W
=

RL
Rtot

=
10

11
= 0.909 or 90.9 %

Exercise add 9

a) Because the atoms in the perfect gas are indistinguishable, the number of realization possibilities W
in the Boltzmann-expression for the entropy, S = k lnW , will be smaller. For example an exchange
of two atoms that are in different energy states is indistinguishable from the situation before the
exchange. The same holds for an exchange of their positions.

b) The mass of helium is m = 4u = 4 · 1.66 · 10−27 kg, so Λ = 6.63·10−34
√

2π4·1.66·10−27·1.38·10−23·298
= 50.6 pm.

For 1 mol N = NA, so

Sindist. = 6.02 · 1023 · 1.38 · 10−23 ln

[
1.38 · 10−23 · 298

1 · 105 · (50.6 · 10−12)3
· 2.718

5
2

]
= 126.0 J/molK.

c)

Sindist. − Sdist. = Nk ln

[
kT

PΛ3
e

5
2

]
−Nk ln

[
NkT

PΛ3
e

3
2

]
= Nk ln

[ e

N

]
= −446.6 J/molK.

In other words, the indistinguishability character of the gas decreases the entropy significantly.
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d) First we write the Sackur-Tetrode equation in terms of the volume V using the equation of state
for a perfect gas, PV = NkT ,

Sindist. = Nk ln

[
kT

PΛ3
e

5
2

]
= Nk ln

[
V

NΛ3
e

5
2

]
.

For an isothermal expansion from V1 to 2V1 this equation results in an entropy change given by

∆S = Nk ln

[
2V1

NΛ3
e

5
2

]
−Nk ln

[
V1

NΛ3
e

5
2

]
= Nk ln

[
2V1

V1

]
= Nk ln 2 = nR ln 2.

This is exactly the same result as that of exercise 25.
If we would have considered the atoms of the gas to be distinguishable, we would have found

Sdist. = Nk ln

[
NkT

PΛ3
e

3
2

]
= Nk ln

[
V

Λ3
e

3
2

]
and

∆S = Nk ln

[
2V1

Λ3
e

3
2

]
−Nk ln

[
V1

Λ3
e

3
2

]
= Nk ln

[
2V1

V1

]
= Nk ln 2 = nR ln 2,

so exactly the same result. Even though the number of realization possibilities W has increased
by a factor 2N , which results in ∆S = nR ln 2 (see exercise 25), this increase is the same for
distinguishable and indistinguishable particles and is only determined by the twice as large volume.
The difference Sindist. − Sdist. is only determined by the number of ways in which N particles can
be exchanged. That number of permutations is N ! with an entropy increase of

∆S = k∆ lnW = −k lnN ! ≈ −k(N lnN −N) = −Nk ln(
N

e
) = Nk ln(

e

N
),

which is equal to the difference Sindist. − Sdist. as obtained in the former part.

Exercise add 10

The chemical equilibrium reaction is 1
2N2(g) + 3

2H2(g)� NH3(g).

a) We can determine the standard reaction Gibbs free energy at 298 K with

∆rG
� =

∑
j

νj∆fG
�
j = +

(
−16.45 · 103

)
− 1

2
· 0− 3

2
· 0 = −16.45 · 103 J/mol.

b) In thermodynamic equilibrium ∆rG = 0, such that ∆rG
� = −RT lnQeq = −RT lnK, so

K = exp
[
−∆rG

�

RT

]
= exp

[
−−16.45·103

8.314·298

]
= 765.

c) The reaction quotient is (perfect gases and P� = 1 bar)

Q =

(
PNH3

P�

)
(
PN2

P�

) 1
2
(
PH2

P�

) 3
2

=
4.0

3.0
1
2 · 1.0 3

2

= 2.309

The reaction Gibbs free energy is

∆rG = ∆rG
� +RT lnQ = −16.45 · 103 + 8.314 · 298 ln 2.309 = −14.38 kJ/mol.

d) Since ∆rG < 0 the reaction proceeds spontaneously towards the product.
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Exercise add 11

a)

cyto + e− → cytr with E�
cyt,

Do + e− → Dr with E�
D.

The net reaction becomes

cyto + Dr � cytr + Do with E� = E�
cyt − E�

D.

Therefore the Nernst equation for this cell is (ν = 1)

E = E� − RT

F
ln

[cytr][Do]

[cyto][Dr]
with E� = E�

cyt − E�
D.

b) In equilibrium E = 0 such that

ln
[cytr]eq[Do]eq
[cyto]eq[Dr]eq

= ln
[Do]eq
[Dr]eq

− ln
[cyto]eq
[cytr]eq

=
F

RT

(
E�
cyt − E�

D

)
,

or

ln
[Do]eq
[Dr]eq

= ln
[cyto]eq
[cytr]eq

+
F

RT

(
E�
cyt − E�

D

)
.

This results in a straight line if we plot ln
[Do]eq
[Dr]eq

versus ln
[cyto]eq
[cytr]eq

. The slope is 1 and the intercept

is F
RT

(
E�
cyt − E�

D

)
.

c) From the data we determine the logarithm of the concentration ratio.

ln
[Do]eq
[Dr]eq

-5.882 -4.776 -3.661 -3.002 -2.593 -1.436 -0.6274

ln
[cyto]eq
[cytr]eq

-4.547 -3.772 -2.415 -1.625 -1.094 -0.2120 0.3293

The plot from the previous part with these values results in an intercept of -1.2124, such that at 298 K
E�
cyt = RT

F · (−1.2124) + 0.237 = 0.0257 · (−1.2124) + 0.237 = 0.206 V.

Exercise add 12

For very low concentrations of a dissolved compound (the solute) we can use the simple expression

Π = [B]RT with [B] =
nB
V

=
cB
MB

for the osmotic pressure. Here MB is the molar mass and cB is the mass concentration of the polystyrene.
The osmotic pressure is measured as Π = ρgh, such that

h =

(
RT

ρgMB

)
cB .

When we plot h(cB), the expression between the brackets is the slope. For this plot we can incorporate
the point h(cB = 0) = 0; this increases the accuracy since the equation above is most accurate for cB ≈ 0.
The slope of this plot is 0.29 cmL/g, or

RT

ρgMB
= 0.29 · 10−2 m4/kg.

With that we find for the molar mass of the dissolved polystyrene (g = 9.81 m/s2):

MB =
8.314 · 298.15

1.004 · 103 · 9.81 · 0.29 · 10−2
= 87 kg/mol = 87 · 103 g/mol.
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