Solutions Additional Exercises Physical Chemistry 1 2021 /2022

Exercise add_1

The reaction consists of two equilibria CO(g) + Ha(g) = H2CO(1) and HoCO(1) = HyCO(g).
For the first reaction A,G® = 28.95 kJ/mol. For the second reaction it holds that (perfect gas and
a(l) = 1).

K(vap) = Z((‘(;)) = %.

From the equilibrium condition for that second reaction we can find the standard Gibbs free energy of
evaporation A, G°(H2CO(1) = HaCO(g)) = AvapGC(H2CO(1)) (use P© = 1 bar ~ 750 Torr)

1500 Torr
AvpG® = —RTIn K = —-8.314-298In ——— = —-1.72k L.
vapG RTIn K (vap) 8.3 981n 70 Torr 72 kJ/mo

So for the total reaction, the standard reaction Gibbs free energy is
A,G® =28.95 - 1.72 = 27.23 kJ /mol,

resulting in the equilibrium constant of that reaction given by

A, GO 27.23 - 103
K= = = = ) =1.69-107°
eXp( RT ) exP( 8.314-298)

Exercise add 2

The chemical equilibrium reaction is CaCO3(s) = CaO(s) + COz(g). Using the assumptions of the
exercise we can set the condition for which CaCOj3(s) will dissociate completely in terms of the equilibrium
constant at P = P® being equal to one: K(P®) = 1.

The equilibrium constant is given by (use acaco,(s) = @cao(s) = 1)

_ 3Ca0(s) 2C0s (g) Pco,

K R acoye) = Hg = b
ACaCOs(s) 2l8) ~ "po

A,G° is defined at P = P©, for a given temperature, so A,G® is independent of pressure, but still
dependent on the temperature T'.

In the tables in Atkins we can find the standard formation Gibbs free energies, A;G°, at T = 298 K,
which will differ at other temperatures.

AG° = -RI'nK ~—-RI'lnl=0,s0 A H® —TA,.S5° = 0.

Usually the temperature dependence of A,H® and A,S€ is rather weak as compared to A,G®, that
is why we use the assumption that the temperature dependence of both A, H® and A,.S® is negligible.
Using the tables in Atkins we find

A H® = ApHO(CaO(s))+ArHO(CO2(g)) — A HO(CaCO3(s)) = —635—393.5+1207 = 178.5 kJ /mol.
To determine A, S© we use the standard molar entropies in the tables:
A,.59 = S9(Ca0(s)) + S5 (CO2(g)) — S5 (CaCO3(s)) = 40 + 214 — 93 = 161 J/molK.
Using these values we find for the estimate of the decomposition temperature

_AH® 1785-10°
N E 161

T =1109 K



Exercise add_3

PV =nRT (1 + B)
Vin
with B = —21.7 cm®mol~!. The term carrying B discriminates the gas from a perfect gas. This term
discribes the correction to the equation of state, stemming from the finite size of the atoms. As a result
of this finite size, the atoms experience a smaller volume V', implying a negative value for B.
For this non-perfect gas we cannot use the perfect gas expressions for the internal energy and the heat
capacity.

a) Both processes start with a volume V; = 1.0 1.
We use the equation of state to find the starting pressure V,,, = V/n):

P, = nBT1 (1 LB ) — 2.08.314:300 (1 _ 2171076 ) — 4772105 N/m?.

Vi Vin 1 1.0-10 1.0-10-3/2

b) Because we do not have an expression for Cp to find AH, we use the definition of enthalpy:
H=U+ PV,sodH =dU + PdV + VdP.
The difference we have to determine is AH — AU = f PdV + sz VdP.

At constant volume (Vo = Vi) we find AH — AU =V, Il:“ dP =V (P2 — Py).
We use the equation state once more to find the final pressure:

6 . .
P = LQTZ (1 + VfJ) =2 01%51104 350 (1 -2 10103/2> = 5.567 - 10% N/m?, resulting in

AH — AU =1.0-1073 - (5.567 - 105 — 4.772 - 10°) = 795 J.

At constant pressure we obtain AH — AU = P; ‘Z" dV =P, (Vo — V4).

The final volume V5 follows by rewriting the equation of state:

V2_nRTV nRT?’lB_O soV = nRT:l: \/ nRT +4( 2HT)B

(the negative solut1on gives no real Value for the volume On substltutmg the values, we find

_ nRT nRT, n2RT. _ 2.0-8.314-350 2.0-8314.350 ) 2.02-8.314-350 -
V2 =%5p5"13 \/( P12) +4( Py 2) B=%5%m100 T2 \/ 4.772-10° 4( 4.772-10° ) -21.7-107C.
This results in Vo = 1.175- 1072 m3, so

AH — AU =P, (Vo = V;) =4.772-10° - (1.175-107% — 1.0 - 103) = 835 J.

c) For a perfect gas the inital pressure would be P; = 4.99 - 10 N/m?.
For a perfect gas we find for both processes, at a final volume V5 = 1.17 - 1073 m?
AH — AU =nRAT =2.0-8.31- (350 — 300) = 831 J.

)

Exercise add_4

a) The (external) resistance is R = Zerm = 7% = 7.6 2. sce figure 1.

b) R; is the internal resistance that causes a decrease of the terminal voltage Eierm = Fpyr — IR; =
R, = EEMF;Eterm, — 2027519 = 0.40 -

¢) The transferred charge per mole of electrons is Ag = 1 F(araday) = Nae = 9.6485 - 10* C (e is the
elementary charge).
As long as the process is isochoric (dV = 0) there is no mechanical (volume) work. Besides, for such
an electrochemical process even under isobaric conditions (dP = 0) we can assume that there is no
volume change so that there is no mechanical (volume) work done. So the only work is electrical
and at (the given) constant terminal voltage.
If we choose the battery as system, then the system does (electrical) work on the surroundings (the
resistance R), or W < 0.
In that case W = — [ Eermdq = —Eierm [ dg = —EjermAq = —19 - 96485 = —1.83 MJ/mol.
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Figure 1: The battery is the system; if there is no external resistance, then the terminal voltage is equal
to the maximum voltage of the battery Egyp; if a resistance R is connected the terminal voltage drops
with an amount of IR; to a value of Eiepp,.

If we take the external resistance as system then this work is done by the surroundings (battery)
on the resistance and is W = 1.83 M.J/mol, so positive.

d) Moreover, if the process proceeds reversibly with an infinitely high external resistance, the process
indeed takes infinitely long, but Fierm = Egamr, since the current is infinitely small. The work
then becomes W = — [ Egypdg = —EpyrAq = —20 - 96485 = —1.93 MJ /mol.

e) The maximum terminal voltage is Egpr = 20 V, so the maximum work per mole of transferred
electrons is W = — fEEMqu = —FErpmrAg = —20-96485 = —1.93 MJ/mol, or the work in case
the battery delivers current reversibly.

Of course there is a practical limit here, since the EFgpsp is only realized for (very) small currents,
so for a very small amount of power per time unit.

Exercise add_5

a) We assume that at the standard temperature (298 K) the water is formed in its liquid state, whereas
oxygen and hydrogen are present in gaseous form, each with standard pressure. The cell reaction
then becomes

1
Ha(g) + 502(»‘:’2) = H20(l),
with as standard reaction energy (A;G°(Ha(g)) = AfG®(02(g)) = 0)
£,G = 8,0 (H0(1) ~ ;GO (Ha(g)) — 5 8,G°(0a(g)) = Ay GO (H,0(1)) = ~237.13 ki /mol.

The reaction quotient @ is given by (P(O2(g)) = P(Hz2(g)) = P© and a(H20(1)) = 1)

__a(lO®) _ a(O)
a(Hy) - a%(0y) (%)(%)

In this reaction two electrons are transferred (v = 2 becomes clear from the half reaction Hy(g) =
2HT + 2e7). The EMF of such a cell then is

RT A,GO 2371310

E=E°—-—"IlnQ=E°= = V=123V.
o7 ¢ vF 2. 96485




b)

The standard reaction energy now becomes
A,G° = AyGP(Hy0(g)) = —228.57 kJ/mol.
The reaction quotient is still Q) = 1 since all partial pressures are equal to P©, such that

RT A,GO 22857103
= ©_ —1 = © - T =
E=E" - phQ@=F VF 296485

V=118V.

We use the same design. For this cell the reaction is

13
C4Hio(g) + ?Oz(g) = 4CO04(g) + 5H,0(1),
with as standard reaction Gibbs free energy

AGO = AA;GO(COs(g)) +5A ;G (H20(1)) — AyGZ(CsHio(g)) =
—4-394 —5-237+17.0 = —2744 kJ /mol.
We find the number of electrons that is transferred during this reaction as follows. If the HT-ions

are responsible for the transport of charge between the electrodes in the cell, then one of the half
cell reactions is

13
- Oa(8) +26e™ + 26H" (aq) — 13H,0(1)

Apparently, a part of the formed water is then used for the other half reaction:
C4Hio(g) 4+ 8Ho0(1) — 4C04(g) + 26~ 4 26H (aq).

We find the total reaction as the sum of the first (reduction) and the second (oxidation) half reaction.
So the number of transferred electrons is apparently v = 26, such that we find

CAGE 274410

E° = =
vF 26 - 96485

V=109V.

The alternative design has an oxygen-ion electrolyte with as cathode reaction
130y +52e — 26 0*

and as anode reaction
8 CO2 + 10 HoO + 52 e~ — 2 C4Hyg + 26 0%

Naturally, the total reaction remains the same, just like the number of transferred electrons. Thus
this cell supplies the same EMF under standard circumstances as the one from part c).

For a reversible process at constant temperature and pressure A,.G = W, and the efficiency of the
fuel cell is thus n = 100 %, irrespective of the temperature and the pressure (A, G is the reaction
Gibbs free energy at that temperature and pressure).

The cell can only do external work reversibly at infinitely small current I, since then the internal
resistance is negligibly small.

For a current I through a resistance R the dissipation (electrical energy that is completely trans-
formed into heat) is determined by the power P = I?R; cf. exercise 4. The electrical work done per
time unit At on the external resistance then is Wy = I? Ry At, whereas the work done per time unit
At on the internal resistance is equal to W; = I2R;At, in which Wi + W; = A,.G. The efficiency
therefore becomes

W W I’Ry At _ Ry 10
CAG W+ W, IPRLAt+IPR;,At Rp+R; 11
So in practice the internal resistance R; of the cell decreases the efficiency. In general the internal

resistance increases with the current I and therefore it is not a normal ’ohmic’ resistance. R; has
different causes:

n



- The resistance of the electrolyte (membrane) for the ion transport. If the diffusion of ions
through the membrane is not fast enough for larger currents I a concentration gradient of ions
arises, resulting in a potential difference over that gradient (called polarisation), that decreases
the terminal voltage (and thus the efficiency).

- The redox reaction can have too slow kinetics also on the electrodes, due to which again a
gradient arises in the ion density around the electrode; The consequence is again a polarisation
against the EMF, or a decrease in efficiency. Using a catalyst as electrode can improve the
kinetics.

- Transport of unwanted ions through the membrane (e.g. O?~ in part a)) causes a current
leakage, that does not contribute to the external electrical work. Strictly speaking a leakage
does not affect the internal resistance.

Exercise add_6

a)

At 75°C there is a (dynamic) equilibrium between the folded and the unfolded state such that at
that constant temperature and pressure 0 = dG = dH — TdS — SdT = dH — TdS, such that

AH =TAS, or AS = —AH_ — 50910° _ 1 46 k] /molK.

Tunfold 348.2

The unfolding process at 105 °C is irreversible (spontaneous). If we add two reversible isobars
between 105 °C and 75 °C to the already reversible unfolding process at 75 °C, then we find the
following diagram. So we choose the processes 1, 2 and 3 to be reversible.

folded unfolded
o spontaneous o
105°C » 105 C

)

1 [P P |3

75°C P 75°C
folded 2 unfolded

Acp = cp(unfolded) — cp(folded) = 6.28 kJ/molK and we consider it to be independent of T'
between 75 °C and 105 °C.

H is a state function so AH is independent of the path. Obviously, we choose the path 1-2-3 as
reversible alternative for the spontaneous unfolding process.

For (reversible) isobars dH = d@ + VdP = dQ, such that dH = ¢pdT.

eProcess 1 is isobaric, so dH; = cp(folded)dT, such that AH; = cp(folded) - (75 — 105). (cp is
independent of temperature and of course we can express AT in both K and °C).

eProcess 3 is isobaric, so dHz = cp(unfolded)dT, such that AH3 = cp(unfolded) - (105 — 75).
eProcess 2 is isothermal and AHy = AHy, 014(75 °C) = 509 kJ/mol.

Therefore AHyp £014(105°C) = cp(folded) - (75 — 105) + cp(unfolded) - (105 — 75) + 509 - 103 =
(105 — 75)Acp + 509 - 10° = 30 - 6.28 - 10® + 509 - 10® = 697.4 kJ /mol.

S is a state function, so AS is also independent of the path.

eProcess 1 is isobaric, so d@Q = dQp = dH and reversible, hence dS = dQ% = di _ CpdT

T T
348.2 K g1

g0k 1 = cp(folded)In g%%'

eProcess 3 is reversible and isobaric, so AS = cp(unfolded) 3347:;;{ 9L = cp(unfolded)In 3782

The temperature changes, so AS = cp(folded)



eProcess 2 is isothermal and reversible, so AS = Qjﬁg“ = 5g2;g3 = 1462 J/mol.
So AS = cp(folded)In 3382 + cp(unfolded)In 3182 4 1462 = Acp In 3752 1 1462 =
6.28 - 10%In 5782 4 1462 = 519.0 + 1462 = 1981 J/molK.

e) The heat during the isobaric process, AH,mfold(105°C’) is delivered to the surroundings.

—AHynfora(105°C —
ASepy = 7% = faCO Q) — —OLAI0 — 1844 J/molK.

The second Taw of thermodynamlcs requires that ASi,; > 0 for a spontaneous process.
ASiot = AS + ASepn, = 1981 — 1844 = 137 J/molK.

Thus the total entropy increases, such that the process proceeds indeed spontaneously.

Exercise add 7

The equilibrium constant is given by (we denote AG = A,.G, etc. for the sake of simplicity)

AH®  AS®
AG® = —RTInK or InK ="+ ——.

RT + R
For a temperature independent change of the reaction enthalpy and entropy, the relation between In K
and % is a straight line in a Van 't Hoff-plot with as slope nge and as offset A—I‘ge. For an isobaric
exothermic reaction AH® < 0 while for an endothermic reaction AH® > 0.
This results in figure 2 below

a) In K is positive for all T, so K > 1 for all T'.

b) Forf>forT<T one finds K > 1, while 0 < K < 1 for T > T,
N.B.: T, bhould not be confused with standard conditions. T, is the temperature at which the
equilibrium constant K = 1. Since AG® = —RTIn K = 0 at that temperature, AH® and —T,AS®
must exactly compensate each other, there.

c) For T < T, one finds 0 < K < 1, wile K > 1 for T > T,.
d) 0<K <1foralT.

K is the equilibrium constant, or K = Q.. Outside equilibrium @ # K; in case ) < K the reaction
proceeds to the right and when @ > K the reaction proceeds to the left.

Exercise add_8

We work isothermally so the temperature does not change.

The cell supplies current until the concentrations in the half cells are such that the cell voltage has become
equal to zero; this is the equilibrium situation for the cell.

Only the hydroxide molalities play a role here. From the chemical equations from part 18a) it becomes
clear that during current supply every decrease of the hydroxide molality in the anode half cell will result
in an equal increase of the hydroxide molality in the cathode half cell.

To make the calculation not too complicated we will assume that, given the low concentrations of hydrox-
ide ions, the consumption of HoO in the cathode compartment has a negligible influence on the molality
of the hydroxide.

a) We start with molalities boy- . = bog- , = bo- So at every moment during discharge
bOH’,c = bo + Ab and bOH*,a = b() — Ab,
which, using the Nernst-equation, results in a cell voltage given by

E=E2-E2 -
© T T F Mo (bo—Ab)



In equilibrium the cell voltage is equal to 0 V; in other words

8.315-298 . (by + Ab) _o. (bg+ Ab)
—130— ] =1.30 — 2.568 - 10" 2In ~—2> "~
0=1.30 06355 ™ (50— A0) 30 — 2.568 - 102 In (00— 20)’
such that we find
(bo +Ab) _ 130 g67. 107,

(bo— AD) P 2568102
From this it follows that
9.64-10%' —1
9.64-1021 +1 "~

So in equilibrium we find for the molalities of the hydroxide boy- , ~ 0 and bog- . ~ 2bo.

Ab = b bo-

The cell potential decreases in time so that also the current and the delivered power decrease.
This is approximately an exponential function in time. The cell voltage at time ¢ = 0 is equal to
Ey=FE®=1.30V.

The delivered electrical power at time ¢ is given by

arr 10 ,])°
E t 2 EO exp _F2Rtot b7t
P(t)=Et)I(t) = R(t)t = ( {RH - D :

The total delivered electrical work is thus

2
o
> oo { Eoexp {—%%tb E3 ™ 2RT b°
W:/ Ptdt:/ ( for @ dt = 0/ ex [—Qt]dt,
, Todi= | Rion Rio o V| TF2Ruo by
InK InK
A A

/T,

0 /T
—AHIR |ASTR

(a) AH® < 0 and (b) AH® < 0 and

AS© >0 AS® <0
InK InK
A A

(¢) AH® > 0 and (d) AH® > 0 and
AS® >0 AS® <0

Figure 2: The four situations for K (T) in a Van 't Hoff-plot.



or

Wi

_ B [ F?Rio by ox ART v° \1% _ E§F*Rioi bo _ E§F? by
Riot | ART b°

— ¢ =20 T .
F2Riot bo 0 Riot4RT b° 4RT b°

Substituting all values results in (use the result of exercise 18¢)

1.30% - 964852 - 0.1
= =1.59-10° J.
W 4-8314-298-1 59107 J

This value is independent of the resistance, since we determined the total power, including the
energy dissipated in the cell which latter is delivered to the surroundings as heat.

The heat that is generated in the battery must be transfered to the surroundings as a result of the
isothermal conditions. This negative heat @ is thus equal to the electrical power P; that has been
dissipated in the internal resistance R; of the battery. The voltage over the internal resistance at

every moment is given by F;(t) = E(t) — I(t)Rr = E(t) (1 - Iiit) (see Study Guide, p.20), such
that we find

- - _ Rg 2 o
Qz—/o Pi(t)dt:—/o Ei];i)thz—O;;“)/o E(t)%dt.

If we use the result of the integral from the previous part we find

2
R
. (1 - Rtit) E(%F2Rtotb70 _ _EgFQbio R'L =W RZ
R; ART b©  ART V°© Riyr Riot

1
=—-159-10°— = —1.45-10* J.
59 011 5-10%J

We use the result of the previous part, from which it becomes clear that the fraction % of W

should be considered as loss, so that the fraction 1 — % = %Lt of W is useful (there is no further
work done). The efficiency then is

W, R, 10
_ M = = —0.909 90.9
W Ry, 11 o %

Exercise add_ 9

a)

b)

Because the atoms in the perfect gas are indistinguishable, the number of realization possibilities W
in the Boltzmann-expression for the entropy, S = kln W, will be smaller. For example an exchange
of two atoms that are in different energy states is indistinguishable from the situation before the
exchange. The same holds for an exchange of their positions.

. . B 63-10-34
The mass of helium is m = 4u =4-1.66 - 10727 kg, so A = \/%4_1.66.(;06;521(‘)1'3&10723.298 = 50.6 pm.
For 1 mol N = Ny, so

1.38 - 10723 . 298
1-105-(50.6 - 10—12)

Sindist. = 6.02-10%%-1.38 - 1072 1n [ 5 -2.7183} = 126.0 J/molK.

kT
PA3®

5} — NkIn [NkT 3} = Nkln {%} = —446.6 J/molK.

Sindist. - Sdist. = Nkln |: PAS e

In other words, the indistinguishability character of the gas decreases the entropy significantly.



d) First we write the Sackur-Tetrode equation in terms of the volume V using the equation of state
for a perfect gas, PV = NkT,

S [ uch

PAgeg} —Nkln[ v eg}.

NA3
For an isothermal expansion from V; to 2V; this equation results in an entropy change given by

2V
NA3

Vi s 2V;
ei} ~ Nkln [lexgw] = NkIn {Vll] = Nkln2 =nRIn2.

AS = Nkln{

This is exactly the same result as that of exercise 25.
If we would have considered the atoms of the gas to be distinguishable, we would have found

NET

SdistA = Nkln |:P[X'?’e

AS = NkIn B‘Ees} — Nkln {Vlei} = NkIn [2‘/1/1} = NkIn2=nRIn2,
1

so exactly the same result. Even though the number of realization possibilities W has increased
by a factor 2V, which results in AS = nRIn2 (see exercise 25), this increase is the same for
distinguishable and indistinguishable particles and is only determined by the twice as large volume.
The difference Singist. — Saist. is only determined by the number of ways in which N particles can
be exchanged. That number of permutations is N! with an entropy increase of

AS = kAW = —kIn Nl ~ —k(NTn N — N) = —NkIn() = Nkln(%),
e

which is equal to the difference S;nqist. — Sqist. as obtained in the former part.

Exercise add_10

The chemical equilibrium reaction is $Na(g) + 2Hs(g)= NHj(g).

a) We can determine the standard reaction Gibbs free energy at 298 K with

1 3 :
AG® = ;yjAfG? =+ (-16.45-10%) — 3 0-5:0=-1645- 10% J/mol.

b) In thermodynamic equilibrium A,G = 0, such that A,G® = —RT'InQ., = —RTIn K, so

o _ 103
K = exp [~ 257 | = exp |- S58500° | = 765.

c¢) The reaction quotient is (perfect gases and P© = 1 bar)

P g
( PO ) 4.0
= = = 2.309

(pNz)% (PHZ)% 3.02 -1.03
PO PO

The reaction Gibbs free energy is

AG=A,G°+ RTInQ = —16.45 - 10> + 8.314 - 2981n2.309 = —14.38 kJ/mol.

d) Since A, G < 0 the reaction proceeds spontaneously towards the product.



Exercise add 11
a)

cyt, +e~ — cyt, with E(,yf,

D,+e” — D, with ES.
The net reaction becomes

cyt, + D, = cyt, + D, with E° =E, — EF.

Therefore the Nernst equation for this cell is (v = 1)

RT . [cyt,][D,]
E=FE° - In2 % with E© = E© —Ee
F " eyt,|[Ds]

b) In equilibrium E = 0 such that

t e DO e DO € t e F
ln[CYT]q[ }q:hl[ ]qiln[CYo]q (Eﬁ?,t*Ee)
[cytoleq[Drleq [Dr]eq [yt Jeq RT
or
[Doleq [cytoeq F S) S}
1 =1 — (E;, — E7).
n [Dr}eq n [Cy } + RT ( cyt D)
This results in a straight line if we plot In % "}e" versus In % The slope is 1 and the intercept
is ﬁ (Egt — E@)

¢) From the data we determine the logarithm of the concentration ratio.

m% 5.882 | -4.776 | -3.661 | -3.002 | -2.593 | -1.436 | -0.6274
mg%ﬁzz 4547 | -3.772 | -2.415 | -1.625 | -1.094 | -0.2120 | 0.3293

The plot from the previous part with these values results in an intercept of -1.2124, such that at 298 K
ES, = L. (—1.2124) + 0.237 = 0.0257 - (—1.2124) 4 0.237 = 0.206 V.

cyt —

Exercise add 12

For very low concentrations of a dissolved compound (the solute) we can use the simple expression
np CB
B = —_— = —
Bl=3 =11,
for the osmotic pressure. Here Mp is the molar mass and cp is the mass concentration of the polystyrene.
The osmotic pressure is measured as II = pgh, such that

h—( RT >c
pgMg ) 7

When we plot h(cg), the expression between the brackets is the slope. For this plot we can incorporate
the point h(cp = 0) = 0; this increases the accuracy since the equation above is most accurate for cg = 0.
The slope of this plot is 0.29 cmL/g, or
RT
pgMp

With that we find for the molar mass of the dissolved polystyrene (g = 9.81 m/s?):

8.314 - 298.15
1.004 - 103 -9.81-0.29 - 102

Il = [BJRT with

=0.29-10"% m* /kg.

Mp = = 87 kg/mol = 87 - 10% g/mol.

10



