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Hugo Meeckes
Solid State Chemistry
HG03.625; 53200
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Literature
s Book: Physical Chemistry; PW. Atkins.; edition 12, 11, 10 or 9, Oxford University Press
¢ Study guide: This study guide.

¢ All information will be available via the link in Brightspace or directly at Thermo 2 website .

Aim

— Primary: Insight and skills

— Secondary: Knowledge

Organisation

¢ Introduction

Thermodynamics is built on two phenomenological perceptions, the first law and the second law
describing the conditions for spontaneous processes. In the course Thermodynamics these laws
were treated together with a few basic applications. In the course Thermodynamics 2 this basic
perception i8 deepened and applied to more complex systems.

The following subjects will be treated:

- Stability of phases and phase diagrams - Phase transitions - Thermodynamics of mixtures -
Thermodynamics of solutions - Activity - Electrolytes - Surface tension - The Boltzmann equation

¢ Literature
- Physical Chemistry; P.W. Atkins.; edition 12, 11, 10 or 9, Oxford University Press
- Study guide: will be made available online during the course of the lectures and provides additional
mmformation to the book

¢ Lectures (will be recorded)
During the lectures particularly the more difficult parts of the book will he emphasized. Further-
more, extra subjects that are not dealt with in the book will be treated. If necessary, these subjects 1

will be incorporated in the study guide.
NB., thus the study guide is NOT a summary of ALL subjects.
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A survey of subjects in Atkins which have heen treated in the first vear course Thermodynamics
(2024,/2025) can be found in the COURSE GUIDE at dullenslab/teaching .
The present course Thermodynamics 2 will start with a concise recapitulation of the essential no-
tions treated in Thermodynamics and will overall treat the following parts of the literature (SG is
(thiz) Study Guide, * refers to add. info ternary phase diagrams on the home page)

Date | Atkins ed. 12 or 11 SG ed. 10 ed. O Thermo 2: subjects

03,/00 2D43E 3-10.18-109 [ 2D+3D | 2.10-114+3.7-8 | Recap, Exact diff., Molec. gasses
10/00 4 11-12 4 4 Phase diagr. of pure subst.
17/00 5A+5B.1 13-17 SA-B 5.1-5 P, z-phase diagrams
24,/00 5B.145C - 5B-C 5.5-8 T, z-phase diagrams
01/10 5B.2+5D+5E - 5C-D 5.04% s — I, ternary phase diagr.
08/10 64+5F - 6+5F 6+5.13 Electrolytes, Electrochemistry
15/10 | 14C.2-4+4B.1(c) 20-24 16C.2-4 | 17.8-10+4.4(c) | Interfaces, Statistical Thermod.

¢ Tutorials
The tutorial exercises will be available before, and the solutions after, each tutorial on the website:
Thermo 2 website.
The answers to the exercises do not have to be handed in. The level of the most difficult exercises
is comparable to the most difficult exercises in the book and reflects the level of the exercises in the
exam. There are three groups; group 1 for the Premaster students and group 2 and 3 for the other
students. Students can choose freely which group to join, but room capacity is limited.

Group cohort room day time TA
1 Premaster Transitorium 00.005 | Thursday | 10:30-12:15 Hugo Meckes
2 Chem., Science, MLS HGO01.028 Thursday | 13:30-15:15 | Zuzanna Czarnobil
3 Chem., Science, MLS | Transitorium 00.012 | Thursday | 13:30-15:15 Diya Jiworo
¢ Evaluation

The final evaluation will solely be determined by the exam, which consists of 4 exercises with 4
questions each. All 16 parts have equal weight for the final mark. An example exam (with answers)
will appear online at the end of the course.
Two lists of formulae (without further comments) will be provided at the exam. The first list is the
same as was provided in the course Thermodynamics (Appendix C) and the second list adds the
new formulae (Appendix D).
Graphical calculators are NOT allowed during the exam (regular ones are).




‘ormulae first year course Thermodynamics
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Appendix B

Glossary

Microscopic On an atomic or molecular scale.

Macroscopic Seen from a helicopter view, in such a way that we can forget about microscopic processes
(averaging).

System That part of the universe in which we are interested; we only consider macroscopic systems with
many particles. thermodynamics.

Surroundings The rest of the universe we need to allow exchange of matter or energy with the system:
is also a system, but not the system.

Thermal bath A heat reservoir (usually as surroundings), from which you can extract heat or to which
you can deliver heat, without changing the temperature of the reservoir.

State variables Macroscopic quantities (P, V,T,n,- - -} that describe the thermodynamic state of a
system. For a complete description a minimal amount of (independent) state variables is required.

Equation of state Relation hetween state variables that determines the possible states of the system
in thermodynamic equilibrium.

Thermodynamic equilibrium A system is in thermodynamic equilibrium if the state variables of the
system do not change spontaneously.

State function A (thermodynamic) single valued function of the (independent) state variables; The
value of a state function is independent of the way the system has reached a certain state.

Reversible process A process during which the system is in thermodynamic equilibrium at every mo-
ment; with that a reversible process is also reversible.

Irreversible process A process that is not necessarily reversible.

Isothermal process A process that proceeds at constant temperature (dT" = 0 for the system).
Isobaric process A process that proceeds at constant pressure (dP = 0 for the system).

Isochoric process A process that proceeds at constant volume (dV = 0 for the system).
Adiabatic process A process that proceeds without heat exchange with the environment (d@Q = 0).
Isolated system No exchange between system and surroundings (dW = d@) = dn =0).

Closed system No exchange of matter between system and surroundings (dn = 0); there can be ex-
change of work (dW # 0) or heat (dQ # 0).

Open system A non-closed system (dn # 0).
Homogeneous system A system in which every (macroscopic) subsystem has the same properties.

Isotropic system A system that has the same properties in all directions, such as a homogeneous fluid.
A erystal is not isotropic.

Intensive quantity Does not change if we enlarge the system; e.g. T and P.
Extensive quantity Doubles if we make the system twice as large; e.g. V' and n.

Statistical thermodynamics Relates microscopic processes and (macroscopic) thermodynamics.



Lecture 1

« Molecular (perfect) gases vs atomic gases
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Lecture 1

« Molecular (perfect) gases vs atomic gases
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Perfect gas: PV = nRT = NKT (equation of state)

Pressure, p

Isotherm
Isobar

pV = constant

Surface
of possible
states

Isochors

Pressure, p

Closed system: n constant (dn = 0)

(=>4 variables reduced to 3)



Perfect gas: PV = nRT = NKT (equation of stgte)
X0 ’

Surface

of possible
states

Pressure, p

Closed system: n constant (dn = 0)
(=>4 variables reduced to 3)




N, =6.02214...-10“mol ™

i i W
Amadeo Avogadro

1/76-1856

Ludwig Boltzmann

NR = Nk =nN .k

J/mol K J/IK

R =N,k

k =1.3806...-10 ©JK ™

1844-1906




Perfect gas: from atoms to molecules

Atomic perfect gas

PV =nRT

@P

TAN
Y
e,

(Study guide p.3-4)
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U=—PV =—nRT

2

Internal energy

of the system




Perfect gas: from atoms to molecules

Atomic perfect gas

PV =nRT

TAN
Y
e,

(Study guide p.3-4)
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Perfect gas: from atoms to molecules

Atomic perfect gas

U = =kT
2

(Study guide p.17-18)

equipartition theorem
(from statistical thermod.)

Internal energy

per degree of freedom

PV =nRT

‘ U =§nRT

|

3N degrees of freedom "




Perfect gas: from atoms to molecules

Only Translational

deqrees of freedom

Also Rotational and Vibrational

Atomic perfect gas

deqgrees of freedom

-
S

:

Molecular perfect gas

2

U=3N}-kT=uT

N\

N, =3

N, =?

N, =?
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Perfect gas: from atoms to molecules

Rotational

degrees of freedom

atom ® N,.=0

linear “ N, =2

non-linear @& (N, =3

UR:MNRikT

N2
N

(M molecu/les) (Nr =#

:

Molecular perfect gas

Rotation axes)
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Perfect gas: from atoms to molecules
Vibrational

deqgrees of freedom

Rotational
degrees of freedom

® N,=0 In total: N atoms in
M molecules

linear “ N, =2 ‘

non-linear Ny =3
¢ i 3N degrees of freedom
3N =N.M +N_M + N M

UR:MNR%kT ‘

3N =3M + N.M + N M

atom




atom ® N,.=0

linear “ N, =2

-linear ‘ N, =3

non

Perfect gas: from atoms to molecules

Rotational
degrees of freedom

=)

1
UR:NWREkT

Vibrational
deqgrees of freedom

111

3N =3M + N.M + N M

N, =0

N, =3N_-5

N, =3N_—6

N ,: # atoms/molecule

L)

N

N, =—
M

) N, =3%—3—NR
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Perfect gas: from atoms to molecules
Vibrational

Rotational
degrees of freedom degrees of freedom
atom ® N,=0 o) N, =0
linear “ N,=2| o) N, =3N_ -5
non-linear @ |N;=3| mmmmm) (N, =3N -6

Vibrational energy [V :Z’\AN ikT
g2

o\ \We

Chemical bond: kinetic and potential energy 17




Atomic perfect gas

Perfect gas: from atoms to molecules

(Study guide p.17-18)

Perfect gas
PV =nRT
obeys the

equipartition theorem

(high T and low P)

-
S

:

Molecular perfect gas

U

3

=U " = = NKT

2

Nk = nR

Exercise 1 ||U =(3+Ng +2N,,)

EMkT
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C

3
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Perfect gas: from atoms to molecules

(Study guide p.17-18) \e

Perfect gas
PV =nRT
obeys the @

)
eqmpartltlc"t& em :

:

hi t‘o low P)
Atomic perf;cég Molecular perfect gas
KT

1

%E Exercise 1 |(U :(3+ NR+2NV)EMkT
NR oU Mk =nR
3 C —( j 1
CV:EnR/ Colar V\CV=(3+NR+2NV)En59




Perfect gas of molecules: example H,O

U

(3+ N, +2N,,)

1
2

Lkt =22 vkt =2 Rt

2

12
2

12

C, =—nR

5/2 4

T T T T T T T T T T11
500 1000

T(K)

LI
2000

cf Argon:

Ar
CV

2

3nR

Source: https://en.wikipedia.org/wiki/Molar_heat_capacity
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Perfect gas of molecules: example H,O

1 12 12
U=(3+N;+2N,)=MKT ===MKT ===nRT
2 2 2
v 12 .3
eV C, =—nR cf Argon:|C," = =nR
vg v 2 2
V.

5/2 4 s

I I | I I I I I L L
200 500 1000 2000

T(K)

Source: https://en.wikipedia.org/wiki/Molar _heat_capacity
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Lecture 1

Total differential of (thermodynamic) functions

(including a recap of thermodynamics 1)
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Perfect gas: PV = nRT = NKT (equation of state)

Only for the system in equilibrium

Isotherm

Isobar

Surface
of possible
states

Pressure, p
Pressure, p

Closed system: n constant (dn = 0) 23




Q = heat

W = work

General case: equilibrium thermodynamics

T T T T R R

(Study guide p.5-10)

Process

R T T R T T R

Surroundings

N
W
X
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
W
N

dW =—-P_dV

lrreversible processes: non-equilibrium and spontaneous

mmmm) Q,\W complicate d

=1bar

t

5
*
%o

00'“
o'%‘.
*’y

I
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Q = heat

W = work

(Study guide p.5-10)

Process

=g
j=11]
=
o
=
=}
=
&
o
=
w2

General case: equilibrium thermodynamics

R T T R T T R

T T T T R R

—-P,.dV

dW

lrreversible processes: non-equilibrium and spontaneous

mmmm) Q,\W complicate d

25

rev

Q
T

_d

entropy|dS

= —PaV

dQ™ =TdS

—

Reversible processes: always equilibrium and not spontaneous
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ICS

thermodynam

First law:

lum

equilibr

General case

dUu =dQ + dwW

dU irr _ dU rev

Surroundings

N
W
X
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
W
N

T T T T R R

— PdV

|

|

m=) [dU = dQ + dW = TdS

ible

reversli

ible

Irreversi

26
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=AU

D)
<

<

m

Uis a
state function

(P, T,.Vy,ny)

state 2
AU = j dU
state 1

General case: equilibrium thermodynamics

T T T R

Surroundings

N
W
X
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
W
N

— PdV

ible

reversli

|

dU =dQ +dW =TdS

ible

Irreversi

|

27
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entropy|dS

First law
dU for an irreversible process can be
determined by an alternative reversible

process between the same states




General case: equation of state

P=PV,T,n)

Only for the system in equilibrium

mmm) ONly three independent variables

Surroundings

O

P,V,T,n

are the state variables
of the system

For a closed system: n constant (dn = 0)

e—

only two independent variables

28



Total differential of a state function: U

[dU =TdS — PdV | ==mp U =U(S,V) dn=0

characteristic eguation (closed system)

U(s,v,n,)

U
U(S,V,,n)
First law: (%j
dU =dQ +dw H s,
— (S,V,,n)

at constant volume:

V,n:(@—uj dS| mmp AU
V.n

dU

0S

_J(ﬁj ds
V,n 68 - 2




Total differential of a state function: U

dU =TdS —PdV | == U =U(S,V) dn =0

charfcteristic equation (closed system)

U(s,v,n,)

U
Ui, v,n)

=)
S as ).

__ (5,V.,n)

1

_J(ﬁj ds
von 0S Vo 30

at constant volume:

V,n:(ﬁj dS| mmp AU
V.,n

dU

0S




Total differential of a state function: U

dU =TdS —PdV | == U =U(S,V) dn =0

charfcteristic equation (closed system)

U(s,v,n,)

g U(S,V,,n)
%)
(%j ;T "\ s v
0 N - (S,V,,n)
1

at constant volume:

oU

=| = dS=TdS AU
v (asjv,n =)

dU

vo=[TdS

31




Total differential of a state function: U

dU =TdS — PdV | mmsd U =U(S,V)

char@cteristic equation

at constant entropy:

dU

(v
RV,

)

U(s,V,n,) ’

dn=0

u(s,V,n,)

GV,

(5,V,,n)

1

=-PdV | mp |AU

Sn —

dev

(closed system)

32



Total differential of a state function: U

(SG: appendix A) dn=0
(closed system)

Alternatively:

Choose
P andV U,V ,n) T
follows
) @ ouU from the
iIndependent - (O—Pj equation
variables Vi, of state
T (%) )Vl ,Hl)

at constant volume:

oU oU
ROERTE O




Total differential of a state function: U

dU =TdS — PdV |(characteristic equation) dn=0
(closed system)

T
- UBWn) follows
oU from the

— equation

— ( oP jv a of state

— (B,V,,n)

dP is not the most convenient variable for dU

du |, (%j dP =I(Qj dP
i BCE oP ), | s




Introduce new enerqy function: Enthalpy H

Solution for using P as a variable: (SG: page 6)
define Enthalpy H

H=U+PV
dH =dU + PdV +VdP =TdS — PdV + PdV +VdP

dH =TdS +VdP | B [H = H (S, P)

Consequence: heat capacity differs for U and H

(equilibrium)

dH =TdS +VdP =dQ +VdP

CP

' BEE)




Introduce new enerqy function: Enthalpy H

dH =TdS +VdP

So enthalpy:

If you further
do not like
entropy S as
Independent
variable

H=H(s,p)] [an=0
(closed system)

T

follows

from the
equation
of state

36




Helmholtz free energy and Gibbs free energy

(SG: page 8-10)
...then define Helmholtz free energy A

A=U -TS
dA=dU —-TdS —SdT =TdS — PdV —TdS —SdT

B [dA = —PdV —SdT | B (W, = AA

delivered
...and the Gibbs free enerqy G defined via the enthalpy H
G=H-TS dH =TdS +VdP

dG =dH —TdS —SdT =TdS +VdP —TdS — SdT

BB [dG =VdP —SdT | B (W, =AG|

37




Total differential of a state function:
Choose appropriate energy function

For a choice Sand V:|dU =TdS - PdV

For achoice Sand P : |dH =TdS +VdP Characteristic

equations

For achoiceVand T :|dA =—-PdV —SdT

For a choice‘P and T,: dG =VdP — SdT
|

your favourite'state variables

Herman von Helmholtz Josiah Gibbs
1821-1894 1839-1903 38



Total differential of a state function:
Choose appropriate energy function

For a choice Sand V:|dU =TdS - PdV

For a choice Sand P : |dH =TdS +VdP

Characteristic

For achoiceVand T:|dA =—-PdV —SdT equations

For a choice Pand T:|dG =VdP — SdT

\ J
!

your favourite'state variables

Choice of P and V is possible but very inconvenient
[PV] =J and [ST] =J, so choose P,Sor P,Tor V,Sor V,T

Choice of eg. T and P for H is tedious but possible
and can be advantageous 39




General case: equilibrium thermodynamics

Second law: for a

spontaneous process
the total entropy S, dsS tot ds dSsurr 0

always increases

Second law: In
thermodynamic equilibrium | [dS™ =dS +dS =0

— tot surr
dStot =0

Equilibrium state

dG*, , =0

PT

0 Reaction progriession &1

é:eq

dG|, =0

P.T

40




Total differential of a state function: G

dG =VdP — SdT dn=0

Gibbs free energy (closed system)

V

follows

from the
equation
of state

Process: (P11V11T11n1) == (P21V21T21n1)

41



Total differential of a state function: G
dG =VdP — SdT dn =0

(closed system)

V

follows

from the
equation
of state

42




Total differential of a state function: G
dG =VdP — SdT dn =0

(closed system)

V

follows

from the
equation
of state

43




Total differential of a state function: G

AG(P, T, —» Pz’Tz)‘n ‘ G state function ‘

s 15m)
(B,1,,n)




Total differential of a state function: G

AG(R,T, > P,,T,).

|-, T,m)
(B,T,,n)

G state function ‘

(Thermodynamics)

(Mathematics)

1 ‘ 4G . .
exact differential ‘

|

0°G | [ 0°G
OToP ) | oPO%




General properties of a differentiable function: f(X,y)
(See Atkins p.105 (ed. 11 or 12); p.92 (ed.9))

Z)(or) = (2)5)[5).-

Euler chain relation
) (2
OX y Of )

(%j (éixjyl[af

Exercise 2
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Exact differential of a state function: Maxwell relation

dG:(Z_ﬂ dT+(Z_§] P oG oG
y ! Sz—( j and V :( j
P T

oT oP

dG =-SdT +VdF

( 0°G j_( 0°G ] P

olop oPol Maxwell relation
O (an - O (an Exercise 3
oT L oP J; ; oP \ aT J, .
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Exact differential of a state function: Maxwell relations

dG =-SdT +VdP

N

Maxwell relations

55 )
8T P 8 T James Clerk Maxwell

1831-1879

) What is the use of these equations?
P

48



Exact differential of a state function: Maxwell relations

So we can simply determine the

dG = -SdT +VdP change in entropy of a process
running at constant T by integrating

—-— a more easily measurable quantity .

Maxwell relations (0V/0T)p over the pressure change

during the process

(Z_\T/jp ] _(2_81 AS|; = —j(%ldp
5_\T/jp ds |T=—(5—Vjpdp J

oT

AN
D | D
3|3
—
_|
Il
I
TN TN
o))

j Exercise 4
P
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