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• Total differential of (thermodynamic) functions 
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Perfect gas: PV = nRT = NkT (equation of state) 

Closed system: n constant (dn = 0) 

(=> 4 variables reduced to 3) 
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Amadeo Avogadro 

1776-1856 

-123

A mol10...02214.6 N

knNNknR A

kNR A

J/mol K J/K 

9 

123
J10...3806.1


 Kk

Ludwig Boltzmann 

1844-1906 
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Perfect gas: from atoms to molecules 

(Study guide p.3-4) 

Internal energy  

of the system 

nRTPVU
2

3

2

3


Atomic perfect gas 

nRTPV 
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Perfect gas: from atoms to molecules 

(Study guide p.3-4) 

Internal energy  

of the system 

nRTPVU
2

3

2

3


Atomic perfect gas 

nRTPV 
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Perfect gas: from atoms to molecules 

Atomic perfect gas 

nRTPV 

kTU
2

1


Internal energy 

per degree of freedom  

 (from statistical thermod.) 

kTNU
2

1
3

(x,y,z) (N atoms) 

nRNk 

nRTU
2

3


3N degrees of freedom  

(Study guide p.17-18) 

equipartition theorem 
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Perfect gas: from atoms to molecules 

Atomic perfect gas Molecular perfect gas 

T

2

1
3 UkTNU 

Only Translational  

degrees of freedom  

Also Rotational and Vibrational 

degrees of freedom  

 

3T N

?R N

?V N
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Perfect gas: from atoms to molecules 

Molecular perfect gas 

Rotational  

degrees of freedom  

 

0R N

2R N

3R N

atom 

linear 

non-linear 

kTMNU
2

1
R

R


(NR = # Rotation axes) (M molecules) 
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Perfect gas: from atoms to molecules 
Rotational  

degrees of freedom  

 

0R N

2R N

3R N

atom 

linear 

non-linear 

Vibrational  

degrees of freedom  

 
In total: N atoms in  

M molecules 

3N degrees of freedom 

MNMNMNN VRT3 

MNMNMN VR33 

kTMNU
2

1
R

R

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Perfect gas: from atoms to molecules 
Rotational  

degrees of freedom  

 

0R N

2R N

3R N

atom 

linear 

non-linear 

Vibrational  

degrees of freedom  

 

RV 33 N
M

N
N 

0V N

53 mV  NN

63 mV  NN

M

N
N mkTMNU

2

1
R

R


Nm: # atoms/molecule 

MNMNMN VR33 
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Perfect gas: from atoms to molecules 
Rotational  

degrees of freedom  

 

0R N

2R N

3R N

atom 

linear 

non-linear 

Vibrational  

degrees of freedom  

 

kTMNU
2

1
2 V

V


0V N

53 mV  NN

63 mV  NN

Vibrational energy 

Chemical bond: kinetic and potential energy 
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Perfect gas: from atoms to molecules 

Atomic perfect gas Molecular perfect gas 

(Study guide p.17-18) 

NkTUU
2

3T
   MkTNNU

2

1
23 VR 

nRNk  nRMk 

nRCV
2

3
   nRNNCV

2

1
23 VR V

V
T

U
C 














Perfect gas 

nRTPV 

obeys the 

equipartition theorem 

(high T and low P) 

Exercise 1 
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Perfect gas: from atoms to molecules 

Atomic perfect gas Molecular perfect gas 

(Study guide p.17-18) 

NkTUU
2

3T
   MkTNNU

2

1
23 VR 

nRNk  nRMk 

nRCV
2

3
   nRNNCV

2

1
23 VR V

V
T

U
C 














Perfect gas 

nRTPV 

obeys the 

equipartition theorem 

(high T and low P) 

Exercise 1 
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Perfect gas of molecules: example H2O 

  nRTMkTMkTNNU
2

12

2

12

2

1
23 VR 

nRCV
2

3Ar
nRCV

2

12
 cf Argon: 

Source: https://en.wikipedia.org/wiki/Molar_heat_capacity 

nR

CV

)(KT
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Perfect gas of molecules: example H2O 

  nRTMkTMkTNNU
2

12

2

12

2

1
23 VR 

nRCV
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3Ar
nRCV
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• Molecular (perfect) gases vs atomic gases 
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      (including a recap of thermodynamics 1) 
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11 ,nTP

G
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
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Perfect gas: PV = nRT = NkT (equation of state) 

Only for the system in equilibrium 

Closed system: n constant (dn = 0) 
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General case: equilibrium thermodynamics 

workW

process 

(Study guide p.5-10) 

Irreversible processes: non-equilibrium and spontaneous 

dcomplicate,WQ dVPdW ext

heatQ

1bar ext P

? P
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General case: equilibrium thermodynamics 

TdSdQ 
rev

workW

process 

(Study guide p.5-10) 

Irreversible processes: non-equilibrium and spontaneous 

Reversible processes: always equilibrium and not spontaneous 

dcomplicate,WQ dVPdW ext

heatQ

T

dQ
dS

rev

entropy 
PdVdW 

rev
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General case: equilibrium thermodynamics 

T

dQ
dS

rev

entropy 

First law: 

dWdQdU 

revirr
dUdU 

PdVTdSdWdQdU 

irreversible reversible 



),,,( 1111 nVTP

),,,( 2222 nVTP
A

B
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General case: equilibrium thermodynamics 

T

dQ
dS

rev

entropy 

PdVTdSdWdQdU 

irreversible reversible 

First law 

dU for an irreversible process can be   

determined by an alternative reversible 

process between the same states 



2state

1state

dUU

UU BA 

U is a  

state function 



For a closed system: n constant (dn = 0) 

28 

General case: equation of state 

Only for the system in equilibrium ),,( nTVPP 

only three independent variables 

only two independent variables 

nTVP ,,,

are the state variables 

of the system 



11 ,nVS

U













0dn

Total differential of a state function: U 

(closed system) 

PdVTdSdU 

dS
S

U
U

nV

nV  













,

,

First law: 

dWdQdU 

characteristic equation 

29 

 VSUU ,

dS
S

U
dU

nV

nV

,

, 













at constant volume: 



11 ,nVS

U













0dn

Total differential of a state function: U 

(closed system) 

PdVTdSdU 
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 VSUU ,

dS
S

U
dU

nV

nV

,

, 











 dS

S

U
U

nV

nV  













,

,

at constant volume: 

characteristic equation 

T
S

U

nV














,



11 ,nVS

U













0dn

Total differential of a state function: U 

(closed system) 

PdVTdSdU 

 TdSU nV ,

characteristic equation 

31 

 VSUU ,

T
S

U

nV














,

TdSdS
S

U
dU

nV

nV 













,

,

at constant volume: 



0dn

Total differential of a state function: U 

(closed system) 

PdVTdSdU 

 PdVU nS ,

characteristic equation 
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 VSUU ,

P
V

U

nS














,

PdVdV
V

U
dU

nS

nS 













,

,

at constant entropy: 



11 ,nVP

U













dP
P

U
dU

nV

nV

,

, 











 dP

P

U
U

nV

nV  













,

,

T  

follows 

from the 

equation

of state 

(SG: appendix A) 

Choose  

P and V 
as 

independent 

variables 

33 

(closed system) 

Total differential of a state function: U 

0dn
Alternatively: 

at constant volume: 



11 ,nVP

U













PdVTdSdU 

dP
P

U
dU

nV

nV

,

, 











 dP

P

U
U

nV

nV  













,

,

dP is not the most convenient variable for dU 

34 

(closed system) 

T  

follows 

from the 

equation

of state 

0dn

Total differential of a state function: U 

(characteristic equation) 



Introduce new energy function: Enthalpy H 

PVUH 

VdPPdVPdVTdSVdPPdVdUdH 

Enthalpy H 

VdPTdSdH 

Consequence: heat capacity differs for U and H 

(SG: page 6) 

VdPdQVdPTdSdH 

VV

V
T

U

T

Q
C 



























PP

P
T

H

T

Q
C 



























PdVdQdWdQdU 

(equilibrium) 

35 

),( PSHH 

Solution for using P as a variable:  

define 



VdPTdSdH 

dP
P

H
dH

nS

nS

,

, 











 dPVH nS  ,

If you further 

do not like 

entropy S as 

independent 

variable 

36 

Introduce new energy function: Enthalpy H 

(closed system) 

T  

follows 

from the 

equation

of state 

0dn
So enthalpy: 

 PSHH ,



Helmholtz free energy and Gibbs free energy 

TSUA 

SdTTdSPdVTdSSdTTdSdUdA 

…then define Helmholtz free energy A 

SdTPdVdA 

TSHG 

SdTTdSVdPTdSSdTTdSdHdG 

…and the Gibbs free energy G defined via the enthalpy H 

SdTVdPdG 

T
AW 

max

delivered

TP
GW

,

max'

delivered 

(SG: page 8-10) 

VdPTdSdH 

37 



PdVTdSdU 

VdPTdSdH 

SdTVdPdG 

Total differential of a state function:  

Choose appropriate energy function 

For a choice S and V : 

For a choice S and P : 

For a choice V and T : 

For a choice P and T : 

SdTPdVdA  } Characteristic 

equations 

38 

your favourite state variables 

Herman von Helmholtz 

1821-1894 

Josiah Gibbs 

1839-1903 



PdVTdSdU 

VdPTdSdH 

SdTVdPdG 

Total differential of a state function:  

Choose appropriate energy function 

For a choice S and V : 

For a choice S and P : 

For a choice V and T : 

For a choice P and T : 

SdTPdVdA 

Choice of P and V is possible but very inconvenient 

[PV] = J and [ST] = J, so choose P,S or P,T or V,S or V,T  

Choice of eg. T and P for H is tedious but possible  

and can be advantageous 

} Characteristic 

equations 

39 

your favourite state variables 



40 

General case: equilibrium thermodynamics 

Second law: for a 

spontaneous process  

the total entropy Stot 

always increases 

0surrtot  dSdSdS

Second law: in 

thermodynamic equilibrium  

dStot = 0 
0surr

eq

tot  dSdSdS

E
q
u
ili

b
ri
u
m

 s
ta

te
 

Energy minimum 

P,T 0
,


TP
Gd

0
,


TP
Gd 0

,


TP
Gd

Reaction progression   ξ 0 1 

ξeq 

0,

eq
PTdG



11 ,nTP

G













11 ,nTP

G













Total differential of a state function: G 

Process: (P1,V1,T1,n1) => (P2,V2,T2,n1)  

TSPVG ddd 

41 

Gibbs free energy (closed system) 

V  

follows 

from the 

equation

of state 

0dn



11 ,nTP

G













TSPVG ddd 

T
T

G
P

P

G
TPTPG

T

T nP

P

P nT

n dd),,(
2

1 2

2

1 1 ,,

2211  


























42 

(closed system) 

V  

follows 

from the 

equation

of state 

0dn

Total differential of a state function: G 



11 ,nTP

G













TSPVG ddd 

P
P

G
T

T

G
TPTPG

P

P nT

T

T nP

n dd),,(
2

1 2

2

1 1 ,,

2211  

























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(closed system) 

V  

follows 

from the 

equation

of state 

0dn

Total differential of a state function: G 



11 ,nTP

G













P
P

G
T

T

G
T

T

G
P

P

G
P

P nT

T

T nP

T

T nP

P

P nT

dddd
2

1 2

2

1 1

2

1 2

2

1 1 ,,,,

 



















































n
TPTPG ),,(

2211
 G state function 

Total differential of a state function: G 

44 



11 ,nTP

G













nTnPnPnT T

G

PP

G

T
,,,,






























































n
TPTPG ),,(

2211


































TP

G

PT

G
22

G state function 

dG exact differential 

(Mathematics) 

(Thermodynamics) 

Total differential of a state function: G 

45 



General properties of a differentiable function: f(x,y) 

































xy

f

yx

f
22

1




































xyf y

f

f

x

x

y

Euler chain relation 

f

f

y

xx

y

























 1

xy

xy

f f

y

x

f

y

f

f

xx

y






























































 1

46 

(See Atkins p.105 (ed. 11 or 12); p.92 (ed.9)) 

Exercise 2 



Exact differential of a state function: Maxwell relation 

P
P

G
T

T

G
G

TP

ddd 


























TP P

G
V

T

G
S 

























    and

PVTSG ddd 
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Exact differential of a state function: Maxwell relations 
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What is the use of these equations? 

James Clerk Maxwell 

1831-1879 
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So we can simply determine the 

change in entropy of a process 

running at  constant T by integrating 

a more easily measurable quantity 

(∂V/∂T)P over the pressure change 

during the process 

Exercise 4 
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