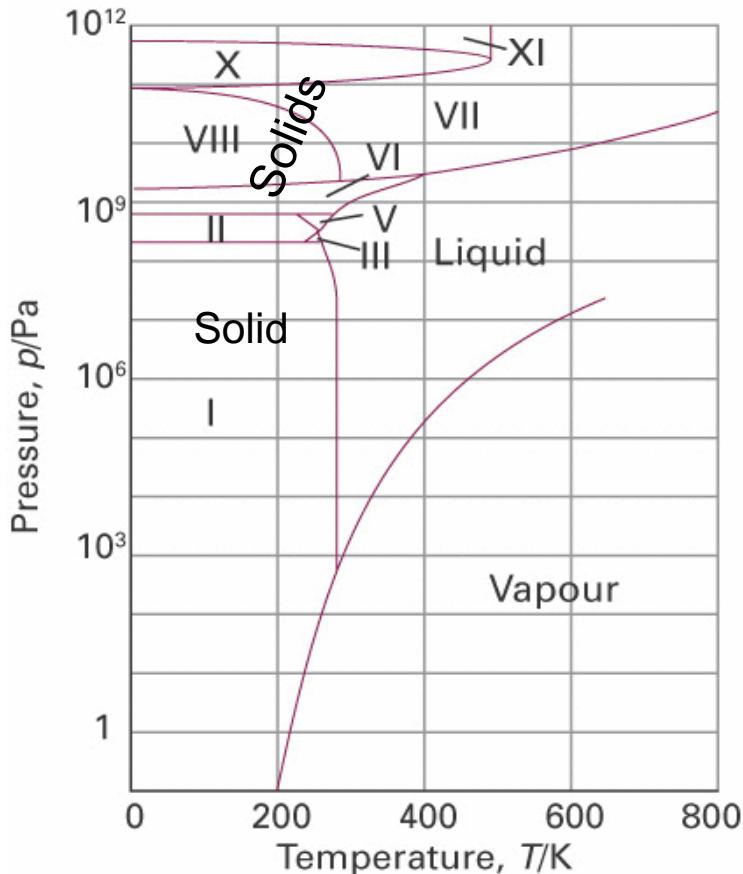


Summary of Lecture 2

Phase diagrams and phase transitions of unary systems



- Phase transitions
- Phase boundaries
- Phase transition temperature
- Melting point
- Boiling point
- Triple point
- Critical point
- Polymorphic forms
- Thermodynamics *vs* kinetics
- Metastable phases

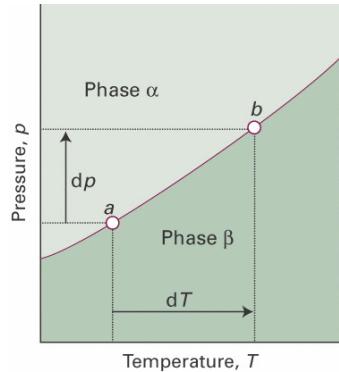
(Equilibrium) Phase Diagram H₂O

Phase boundary lines in phase diagrams of unary systems

$$\frac{dP}{dT} = \frac{\Delta_{trs} S}{\Delta_{trs} V} = \frac{\Delta_{trs} H}{T_{trs} \Delta_{trs} V}$$

Clapeyron

$$\frac{dP}{dT} = \frac{\Delta_{fus} H}{T_{fus} \Delta_{fus} V}$$



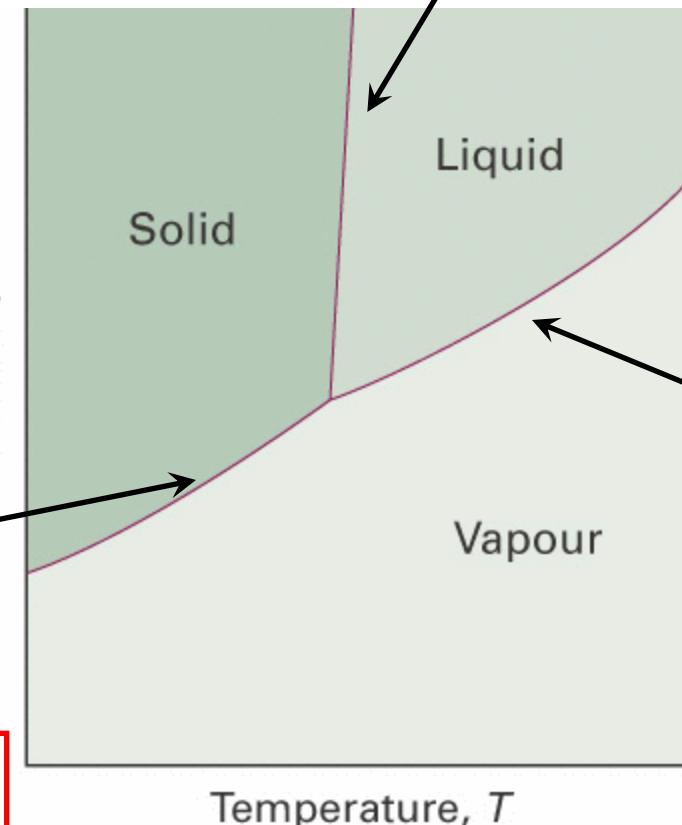
$$P \approx P^* + \frac{\Delta_{fus} H}{\Delta_{fus} V} \ln \frac{T}{T^*} \approx P^* + \frac{\Delta_{fus} H}{T^* \Delta_{fus} V} (T - T^*)$$

$$\frac{dP}{dT} = \frac{\Delta_{sub} H}{T_{sub} \Delta_{sub} V}$$

$$\frac{d \ln P}{dT} \approx \frac{\Delta_{sub} H}{R T^2}$$

$$P \approx P^* \exp \left[-\frac{\Delta_{sub} H}{R} \left(\frac{1}{T} - \frac{1}{T^*} \right) \right]$$

Pressure, p



$$\frac{dP}{dT} = \frac{\Delta_{vap} H}{T_{vap} \Delta_{vap} V}$$

$$\frac{d \ln P}{dT} \approx \frac{\Delta_{vap} H}{R T^2}$$

$$P \approx P^* \exp \left[-\frac{\Delta_{vap} H}{R} \left(\frac{1}{T} - \frac{1}{T^*} \right) \right]$$

Clausius-Clapeyron

Lecture 3: mixtures of compounds

Lecture 3: mixtures of compounds

Components (compounds):

1,2,3,....., C

Molarity (mol/L):

$$c_i = \frac{\text{\# mol solute } i}{\text{volume } V \text{ solution}} = \frac{n_i}{V}$$

Molality (mol/kg):

$$b_i = \frac{\text{\# mol solute } i}{\text{mass } m \text{ solvent}} = \frac{n_i}{m}$$

Mole fraction ():

$$x_i = \frac{\text{\# mol solute } i}{\text{total \# mol in solution}} = \frac{n_i}{\sum_j n_j} = \frac{n_i}{n}$$

$$\sum_i x_i = \sum_i \frac{n_i}{n} = \frac{1}{n} \sum_i n_i = \frac{n}{n} = 1$$

Phase diagrams of mixtures of compounds

Gibbs Phase Rule

$$F = C - P + 2$$

independent intensive variables:

F

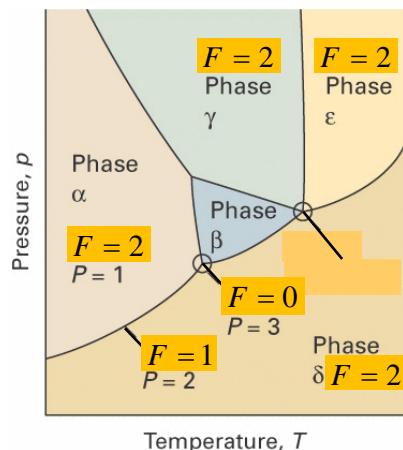
components (compounds):

C

phases in mutual equilibrium:

P

Unary system: $C = 1$:



$$\begin{cases} F = 2 : P, T \text{ free to choose} \\ F = 1 : P(T) \text{ or } T(P) \\ F = 0 : P, T \text{ fixed values of compound} \end{cases}$$

Phase diagrams of mixtures of compounds

Gibbs Phase Rule

$$F = C - P + 2$$

independent intensive variables:

$$F$$

components (compounds):

$$C$$

phases in mutual equilibrium:

$$P$$

intensive variables T, P, x_i^α

$$x_i^\alpha \equiv \frac{n_i^\alpha}{\sum_{j=1}^C n_j^\alpha}$$

$\text{H}_2\text{O} (g) + \text{EthOH} (g)$ $\leftarrow T, P, x_{\text{H}_2\text{O}}^g, x_{\text{EthOH}}^g$

$\text{H}_2\text{O} (l) + \text{EthOH} (l)$ $\leftarrow T, P, x_{\text{H}_2\text{O}}^l, x_{\text{EthOH}}^l$

mole fraction of
component *i*
in phase α

Phase diagrams of mixtures of compounds

Gibbs Phase Rule

$$F = C - P + 2$$

independent intensive variables:

$$F$$

components (compounds):

$$C$$

However:

$$\sum_{i=1}^C x_i^\alpha = \sum_{i=1}^C \frac{n_i^\alpha}{n^\alpha} = \frac{1}{n^\alpha} \sum_{i=1}^C n_i^\alpha = \frac{n^\alpha}{n^\alpha} = 1$$

$$C - 1$$

free x values
for each phase

phases in mutual equilibrium:

$$P$$

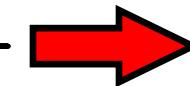
P, T

 Total of free variables:

$$F = P(C - 1) + 2$$

Phase diagrams of mixtures of compounds

$C - 1$ independent x_i per phase
 T, P for all phases



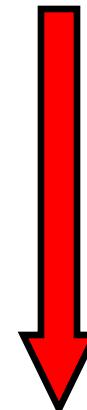
$$F = P(C - 1) + 2$$

However: Equilibrium conditions:

$$\mu_i^\alpha = \mu_i^\beta \text{ for } i = 1, \dots, C \text{ and } \alpha, \beta = 1, \dots, P$$

$$\begin{aligned} \mu_1^\alpha &= \mu_1^\beta = \mu_1^\gamma = \dots = \mu_1^P \\ \mu_2^\alpha &= \mu_2^\beta = \mu_2^\gamma = \dots = \mu_2^P \\ &\cdot \quad \cdot \quad \cdot \quad \cdot \\ &\cdot \quad \cdot \quad \cdot \quad \cdot \\ \mu_C^\alpha &= \mu_C^\beta = \mu_C^\gamma = \dots = \mu_C^P \end{aligned}$$

$$(P - 1)C \text{ conditions}$$

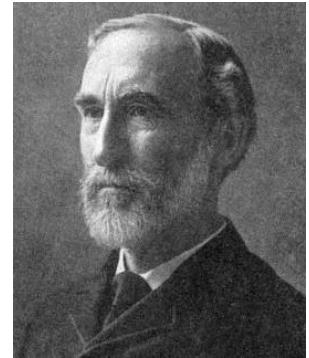
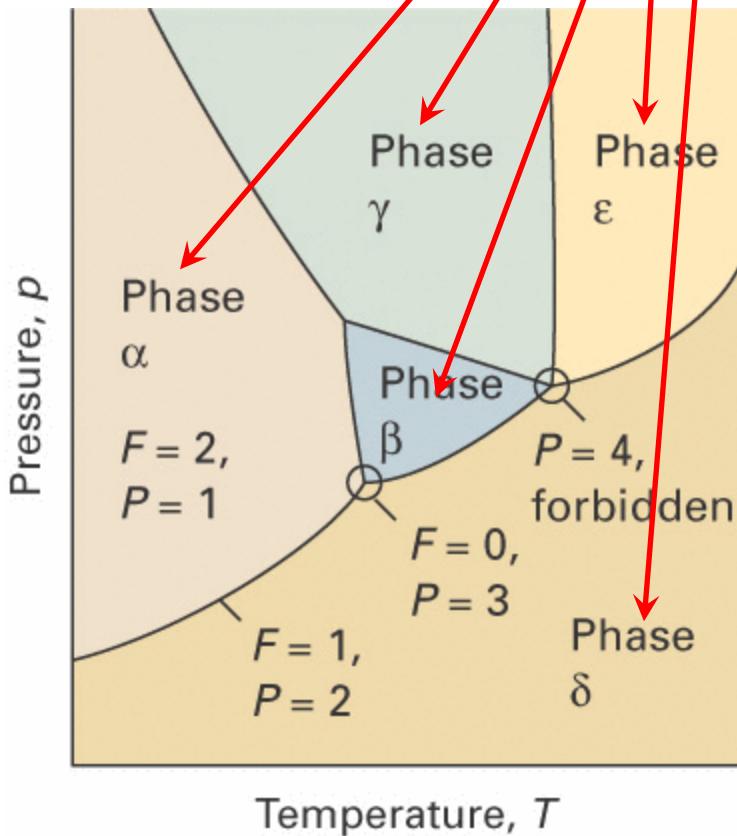


$$F = P(C - 1) + 2 - (P - 1)C = C - P + 2$$

Gibbs phase rule $F = C - P + 2$

Phase diagrams of unary systems

$$\frac{C = 1}{P = 1} \quad \xrightarrow{\quad} \quad F = 2 \quad \xrightarrow{\quad} \quad P, T$$



Gibbs phase rule

$$F = C - P + 2$$

F : # degrees of freedom

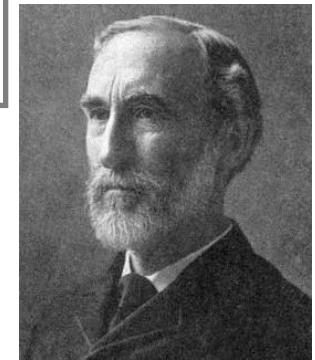
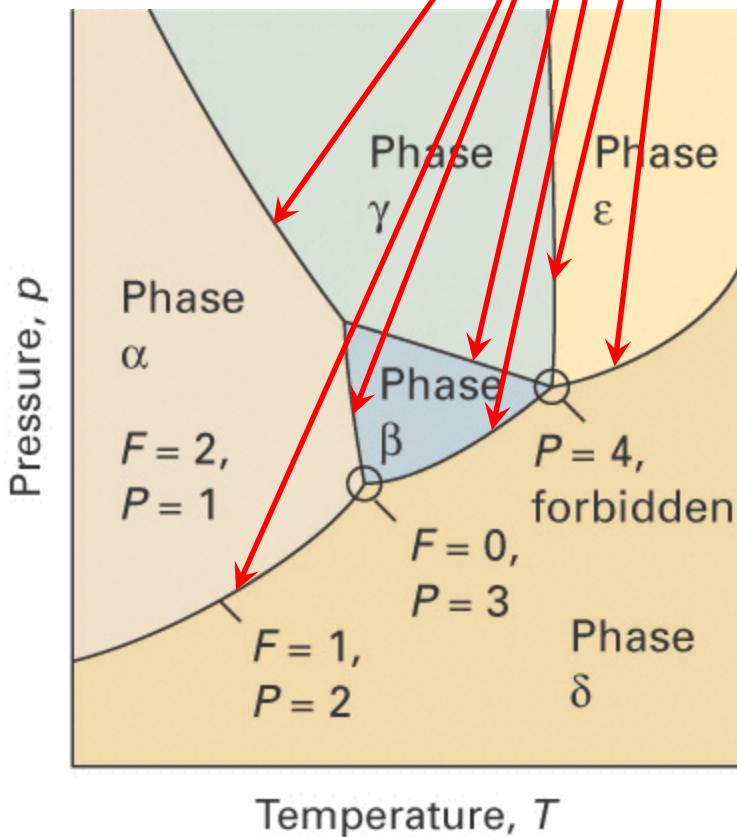
C : # components

P : # phases

unary phase diagram

Phase diagrams of unary systems

$$\frac{C = 1}{P = 2} \rightarrow F = 1 \rightarrow P(T) \text{ or } T(P)$$



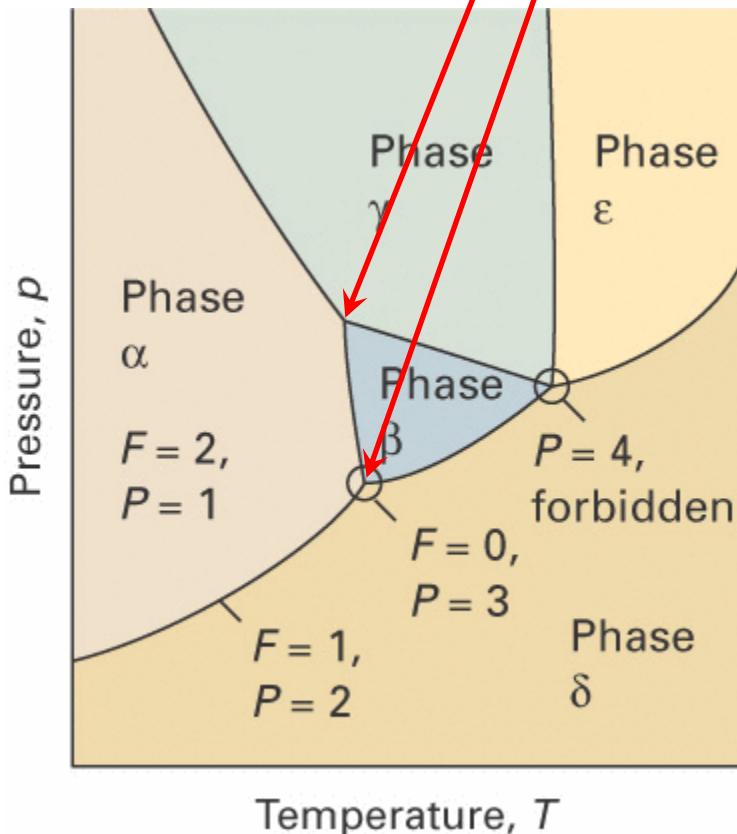
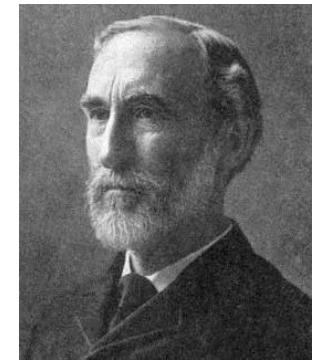
Gibbs phase rule

$$F = C - P + 2$$

unary phase diagram

Phase diagrams of unary systems

$$\frac{C = 1}{P = 3} \rightarrow F = 0 \rightarrow P, T \text{ fixed}$$

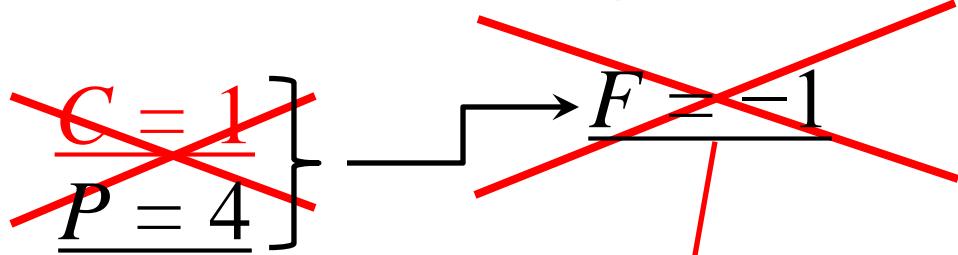
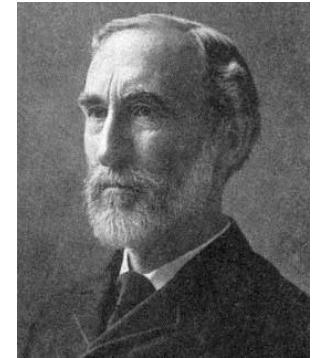
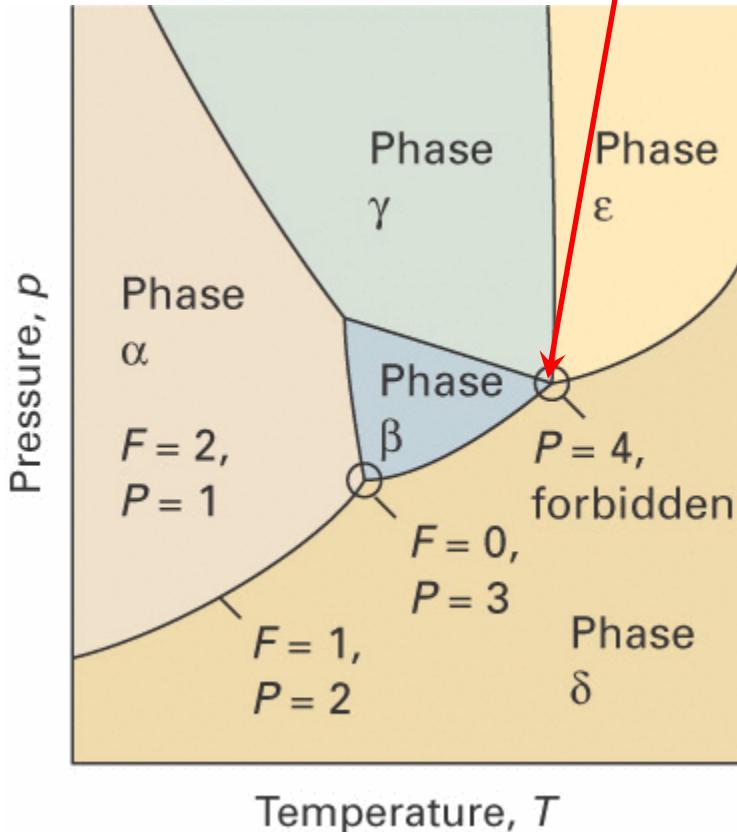


Gibbs phase rule

$$F = C - P + 2$$

unary phase diagram

Phase diagrams of unary systems



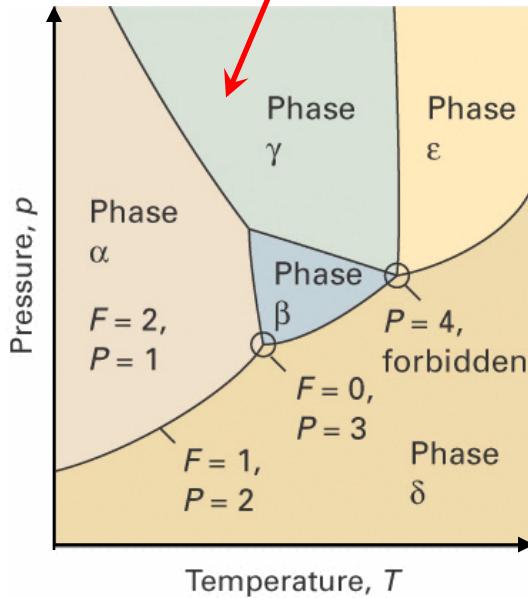
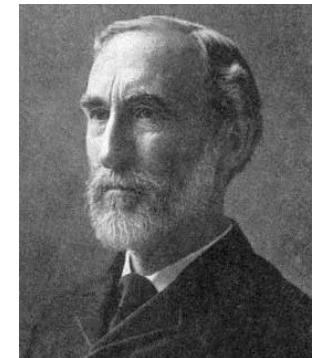
Gibbs phase rule

$$F = C - P + 2$$

unary phase diagram

Phase diagrams of binary systems

$$\left. \begin{array}{l} C = 2 \\ P = 1 \end{array} \right\} \rightarrow \frac{F = 3}{}$$

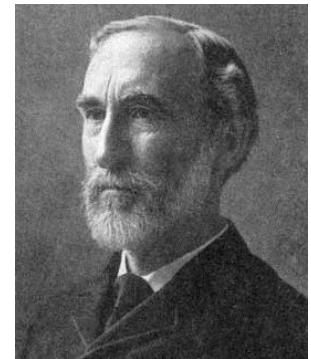
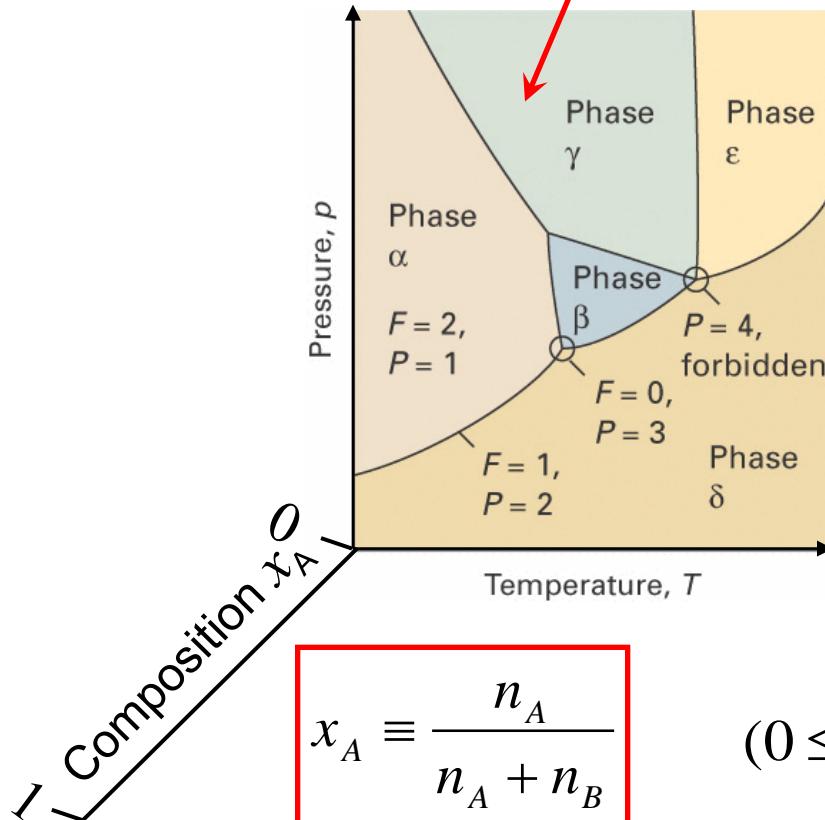


Gibbs phase rule

$$F = C - P + 2$$

Phase diagrams of binary systems

$$\left. \begin{array}{l} C = 2 \\ P = 1 \end{array} \right\} \rightarrow \frac{F = 3}{}$$



Gibbs phase rule

$$F = C - P + 2$$

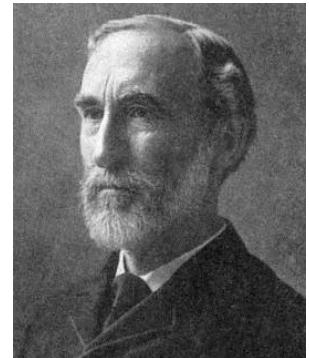
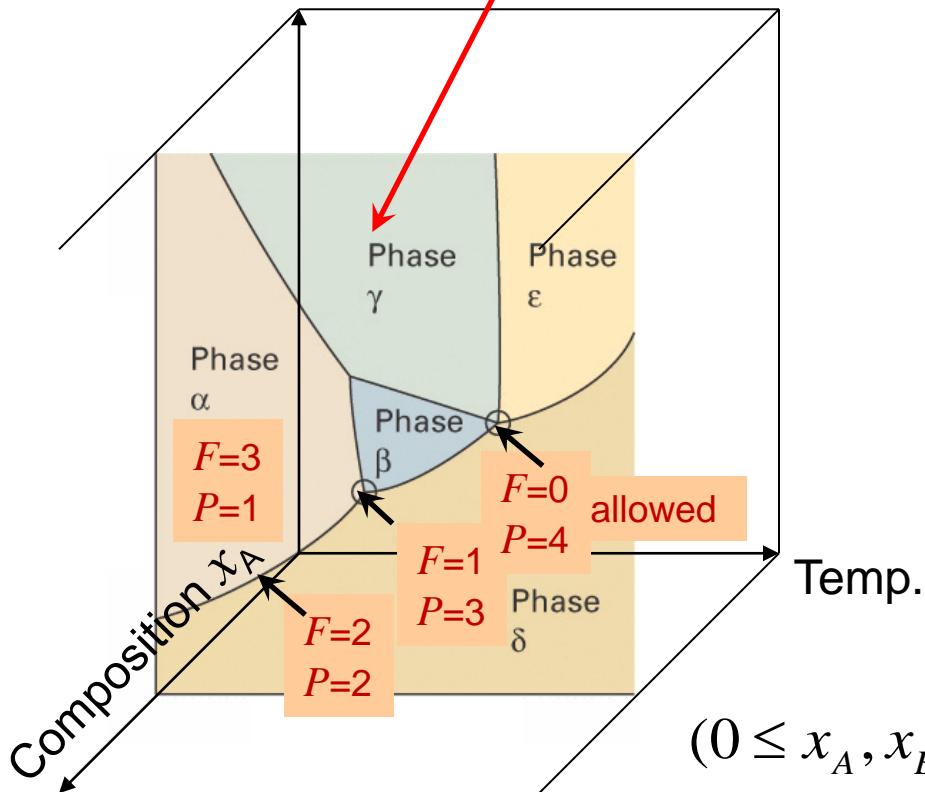
$$x_A \equiv \frac{n_A}{n_A + n_B}$$

$$(0 \leq x_A, x_B \leq 1)$$

$$x_A + x_B = 1$$

Phase diagrams of binary systems

$$\left. \begin{array}{l} C = 2 \\ P = 1 \end{array} \right\} \rightarrow F = 3$$



Gibbs phase rule

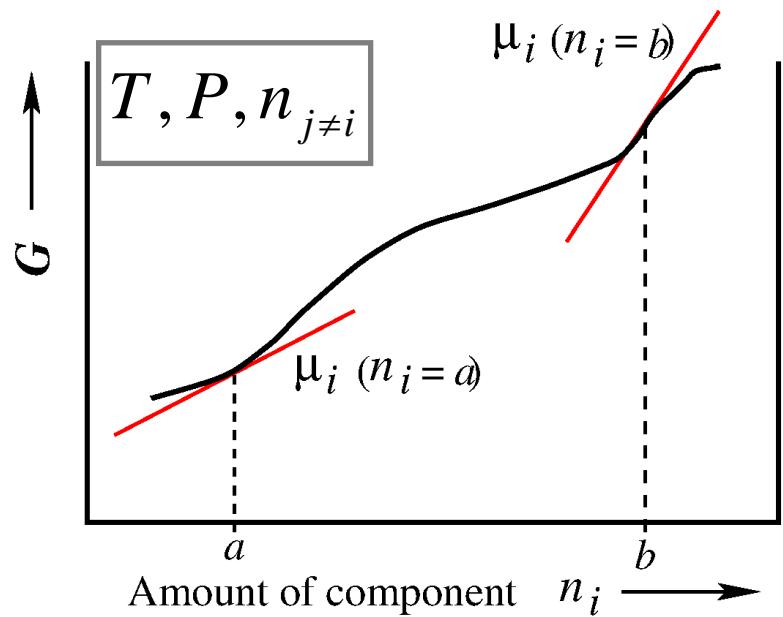
$$F = C - P + 2$$

$$(0 \leq x_A, x_B \leq 1)$$

$$x_A + x_B = 1$$

Partial molar quantities in mixtures

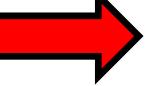
The chemical potential of a component i in mixtures
(Study guide p.11-13)



Partial molar quantities in mixtures

The chemical potential of a component i in mixtures

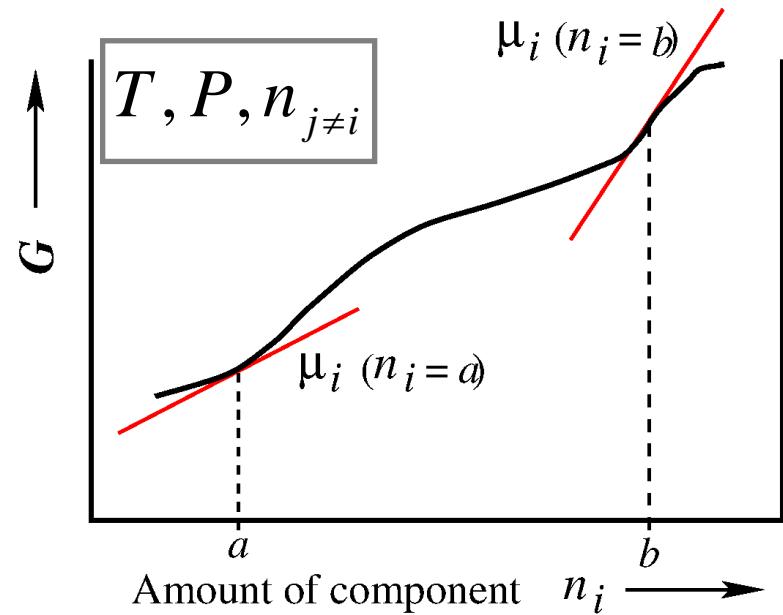
(Study guide p.11-13)

mixture  $dn_i \neq 0$

$$dG = -SdT + VdP + \sum_i \mu_i dn_i$$

$$\mu_i = \left(\frac{\partial G}{\partial n_i} \right)_{T, P, n_{j \neq i}}$$

$$\mu_i \equiv \mu_i^\Theta + RT \ln a_i$$



a_i : the activity of component i in the mixture

Equilibrium P phases

$$\mu_i^\alpha = \mu_i^\beta = \dots$$

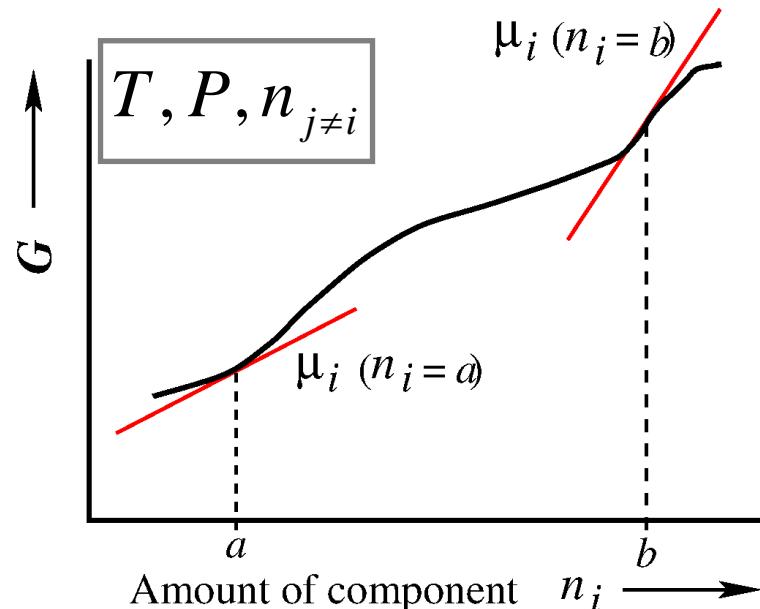
 phases α, β, \dots
components i

Partial molar quantities: Chemical potential

The chemical potential of a component i in mixtures

$$\mu_i = \left(\frac{\partial G}{\partial n_i} \right)_{P,T,n_{j \neq i}}$$

$$\mu_i \equiv \mu_i^\Theta + RT \ln a_i$$



→ $G \Big|_{P,T}^\alpha = \mu_A^\alpha n_A^\alpha + \mu_B^\alpha n_B^\alpha + \dots = \sum_i \mu_i^\alpha n_i^\alpha$

binary systems

$$G \Big|_{P,T}^\alpha = \mu_A^\alpha n_A^\alpha + \mu_B^\alpha n_B^\alpha$$

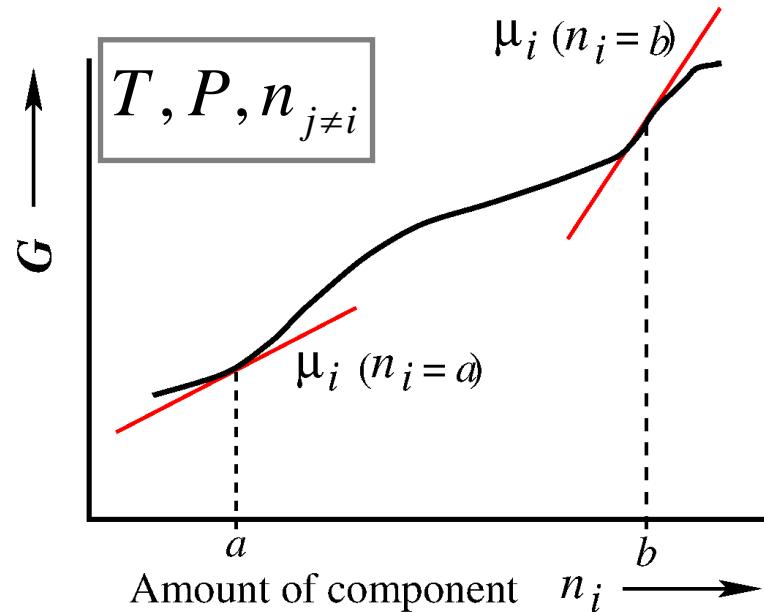
for phase α

Partial molar quantities: Chemical potential

The chemical potential of a component i in mixtures

$$\mu_i = \left(\frac{\partial G}{\partial n_i} \right)_{P, T, n_{j \neq i}}$$

$$\mu_i \equiv \mu_i^\Theta + RT \ln a_i$$



Standard state Θ for component i

$$P^\Theta \equiv 1 \text{ bar}$$

$$a_i \equiv 1$$

component i is pure

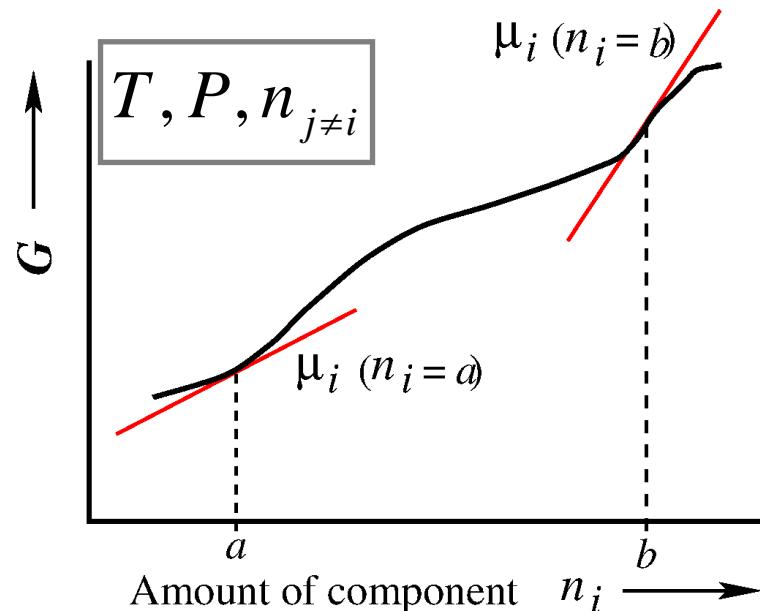
Note: there is no T^Θ

Partial molar quantities: Chemical potential

μ_i : the chemical potential is a partial molar quantity

$$\mu_i = \left(\frac{\partial G}{\partial n_i} \right)_{P,T,n_{j \neq i}}$$

$$\mu_i \equiv \mu_i^\Theta + RT \ln a_i$$



Perfect gases

$$a_i = \frac{P_i}{P^\Theta}$$

$$\mu_i = \mu_i^\Theta + RT \ln \frac{P_i}{P^\Theta}$$

For pure liquids

$$a_l \approx 1$$

$$\mu_l \approx \mu_l^\Theta$$

For pure solids

$$a_s \approx 1$$

$$\mu_s \approx \mu_s^\Theta$$

Partial molar quantities: Chemical potential

Activity and activity coefficient

$$\mu_i = \mu_i^\Theta + RT \ln a_i = \mu_i^\Theta + RT \ln x_i + RT \ln \gamma_i^{(x)}$$

(Mole fraction example)

Mole fraction
(-)

$$x_i = \frac{\text{# mol solute } i}{\text{total # mol in solution}} = \frac{n_i}{n}$$

$$a_i = \gamma_i^{(x)} x_i$$

Molarity
(mol/L)

$$c_i = \frac{\text{# mol solute } i}{\text{volume } V \text{ solution}} = \frac{n_i}{V}$$

$$a_i = \gamma_i^{(c)} \frac{c_i}{c^\Theta}$$

$$c^\Theta \equiv 1 \text{ mol/L}$$

Molality
(mol/kg)

$$b_i = \frac{\text{# mol solute } i}{\text{mass } m \text{ solvent}} = \frac{n_i}{m}$$

$$a_i = \gamma_i^{(b)} \frac{b_i}{b^\Theta}$$

$$b^\Theta \equiv 1 \text{ mol/kg}$$

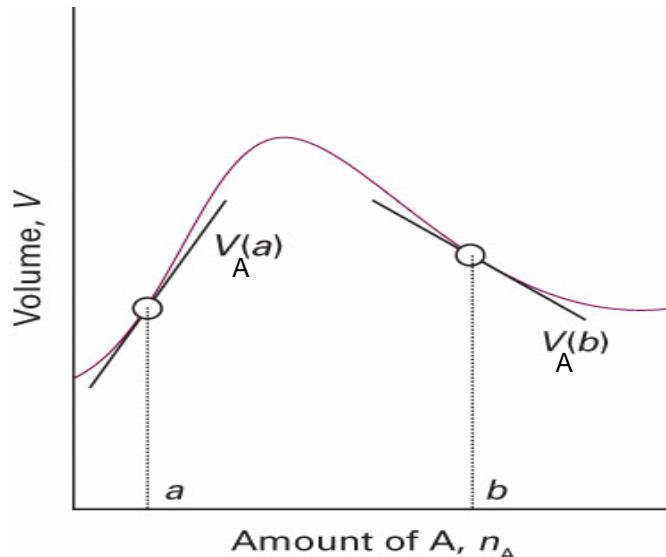
example

$$\text{pH} \equiv -\log a_{\text{H}^+} = -\log \frac{c_{\text{H}^+}}{c^\Theta} - \log \gamma_{\text{H}^+}^{(c)}$$

Partial molar quantities: Partial molar volume

The partial molar volume of a component i in mixtures

$$V_i = \left(\frac{\partial V}{\partial n_i} \right)_{P,T,n_{j \neq i}}$$



binary systems

$$V_{P,T}^\alpha = V_A^\alpha n_A^\alpha + V_B^\alpha n_B^\alpha$$

for phase α

$$V_{m,P,T}^\alpha = \frac{V_{P,T}^\alpha}{n^\alpha} = V_A^\alpha x_A^\alpha + V_B^\alpha x_B^\alpha$$

for each phase

Exercise 10

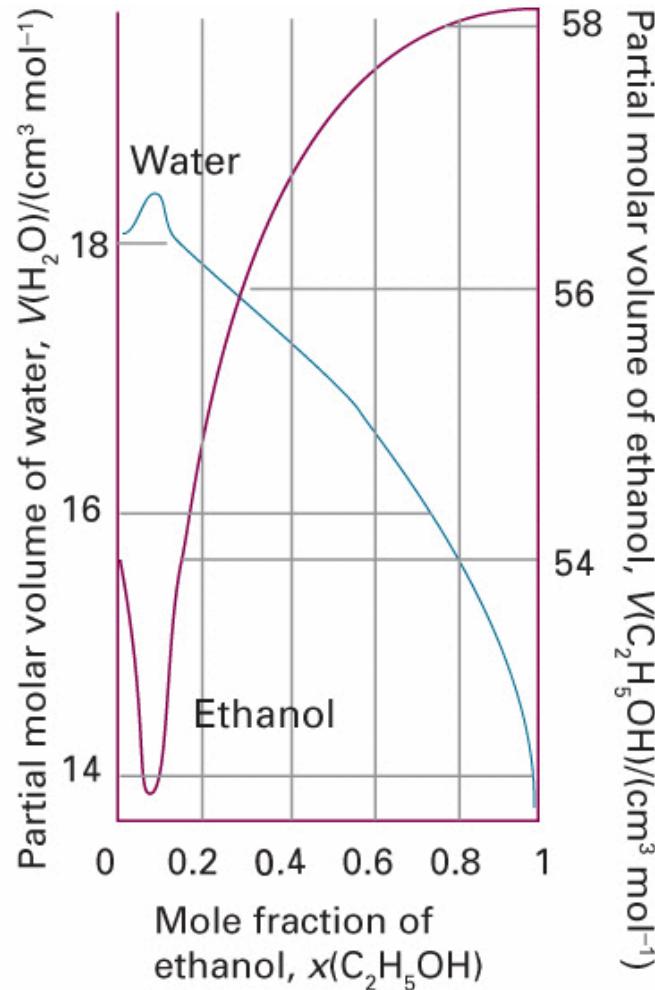
(molar volume)

Partial molar quantities: Partial molar volume

The partial molar volumes of an Ethanol/H₂O mixture

$$V_i = \left(\frac{\partial V}{\partial n_i} \right)_{P,T,n_{j \neq i}}$$

Eth. and H₂O mix well in liquid phase



binary system

$$V^l_{P,T} = V^l_{\text{Eth}} n^l_{\text{Eth}} + V^l_{\text{H}_2\text{O}} n^l_{\text{H}_2\text{O}}$$

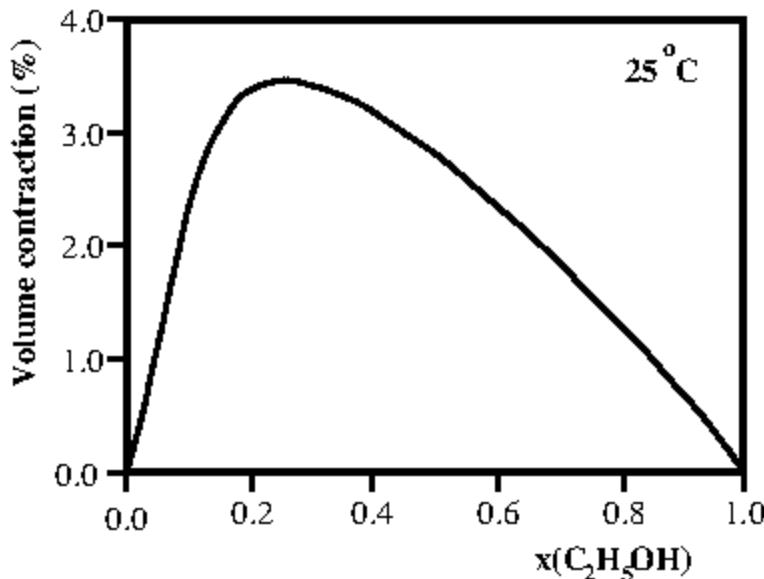
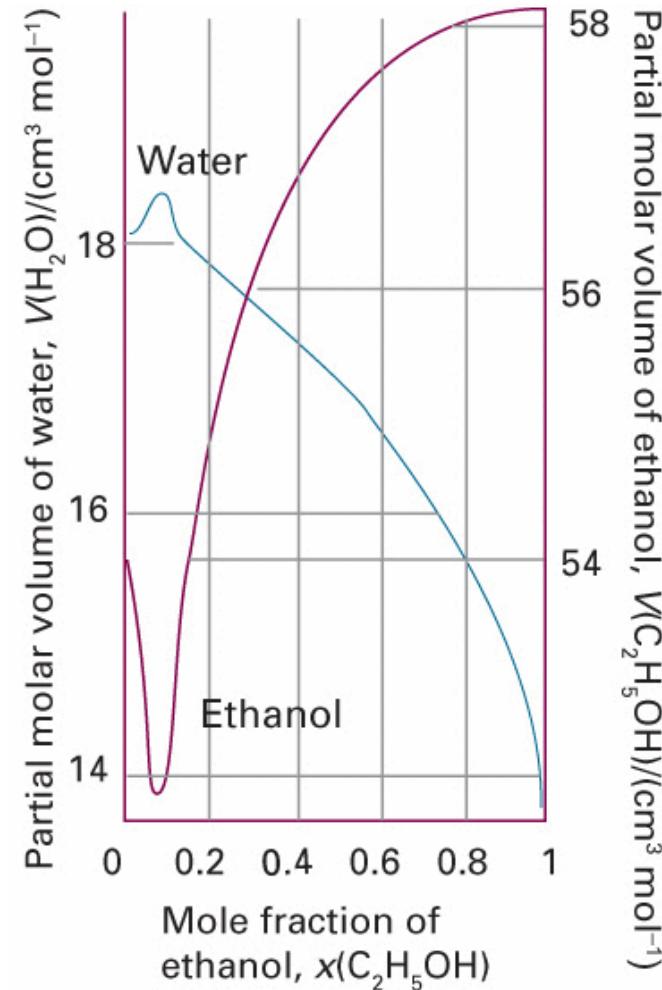
in liquid phase

Partial molar quantities: Partial molar volume

The partial molar volumes of an Ethanol/H₂O mixture

$$V_i = \left(\frac{\partial V}{\partial n_i} \right)_{P,T,n_{j \neq i}}$$

Eth. and H₂O mix well in liquid phase



binary system

$$V^l_{P,T} = V^l_{\text{Eth}} n^l_{\text{Eth}} + V^l_{\text{H}_2\text{O}} n^l_{\text{H}_2\text{O}}$$

in liquid phase

Partial molar quantities: Gibbs-Duhem equation

$$V_i = \left(\frac{\partial V}{\partial n_i} \right)_{P,T,n_{i \neq j}}$$

$$V|_{T,P} = V_A n_A + V_B n_B$$

$$dV|_{T,P} = V_A dn_A + V_B dn_B$$

$$dV|_{T,P} = V_A dn_A + V_B dn_B + n_A dV_A + n_B dV_B$$

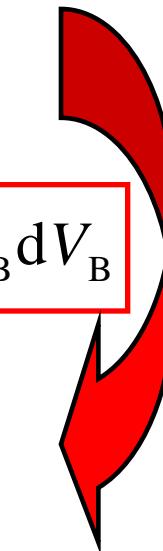
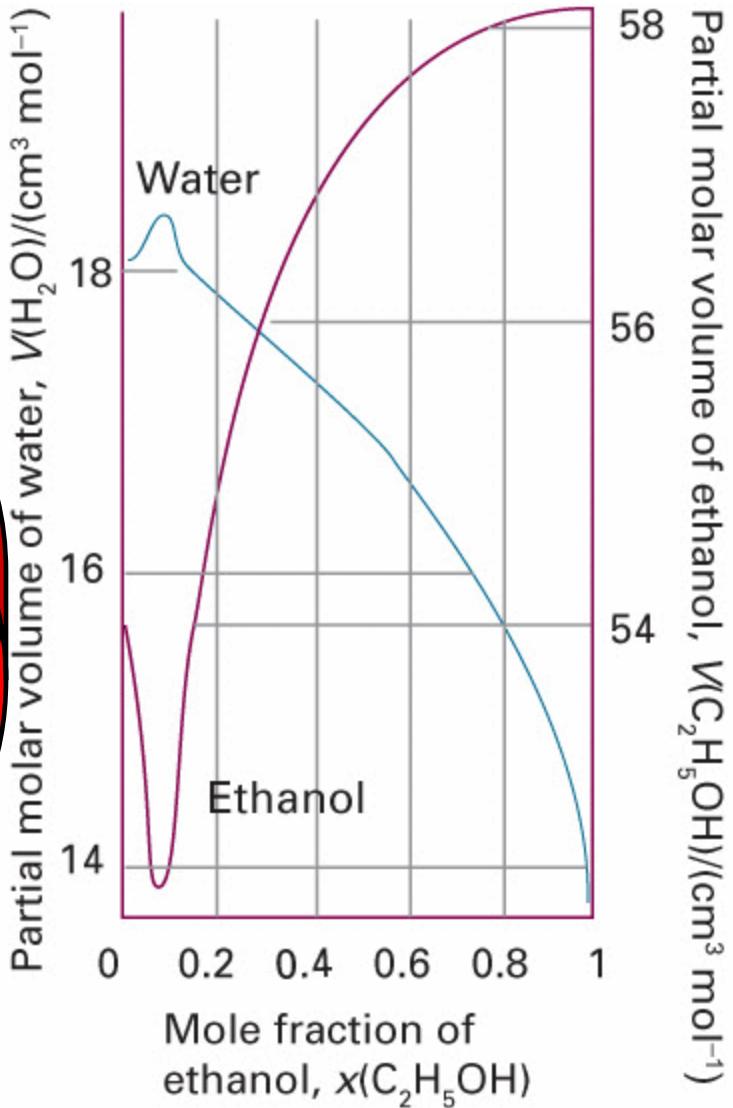
$$\sum_i n_i dV_i = 0$$

$$0 = n_A dV_A + n_B dV_B$$

**Gibbs-Duhem
equation**

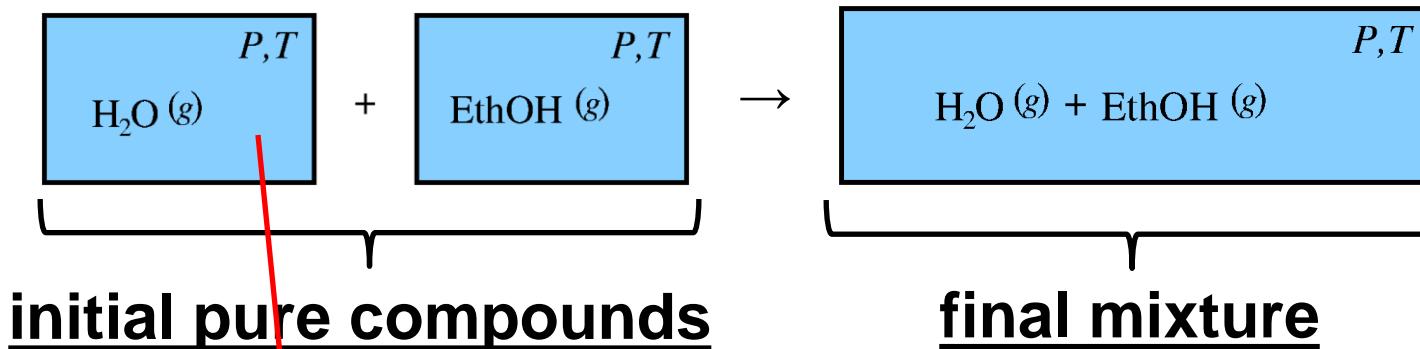
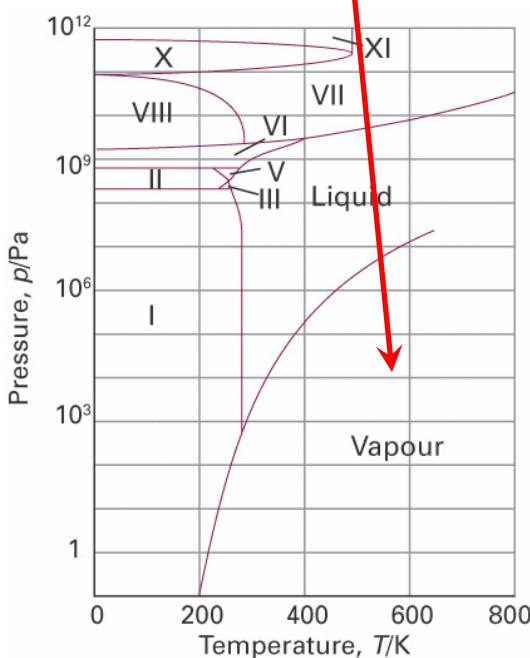
$$\sum_i n_i d\mu_i = 0$$

(for any state function)



Mixing processes of perfect gases: binary mixture

The process of mixing two components @ P, T in gas phase



μ is a partial molar quantity of G , so:

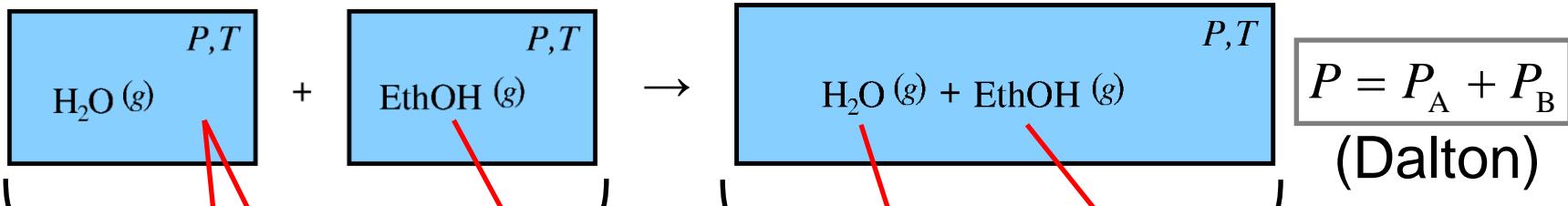
$$G \Big|_{P,T}^g = \sum_i \mu_{i,g} n_{i,g} = \mu_{\text{A},g} n_{\text{A},g} + \mu_{\text{B},g} n_{\text{B},g}$$

$$\mu_{i,g} = \mu_{i,g}^\Theta + RT \ln a_{i,g}$$

Unary phase diagram: $P = 1$

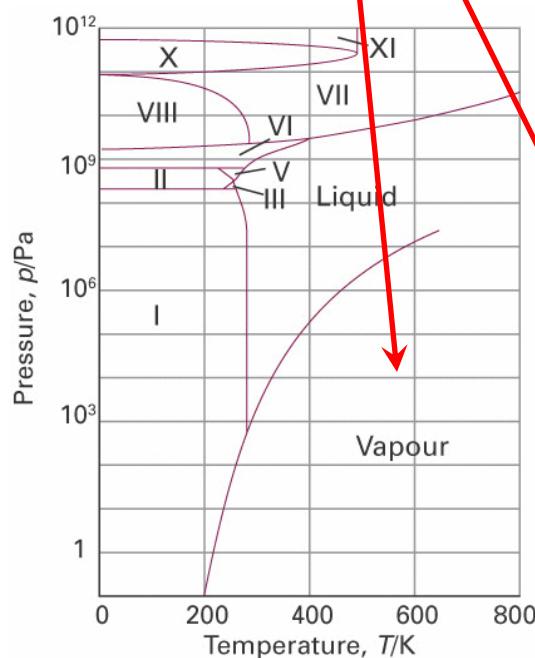
Mixing processes of perfect gases: binary mixture

The process of mixing two components @ P, T in gas phase



initial pure compounds

final mixture



$$a_{B,g} = \frac{P}{P^\Theta}$$

$$a_{A,g} = \frac{P}{P^\Theta}$$

$$a_{A,g} = \frac{P_A}{P^\Theta}$$

$$a_{B,g} = \frac{P_B}{P^\Theta}$$

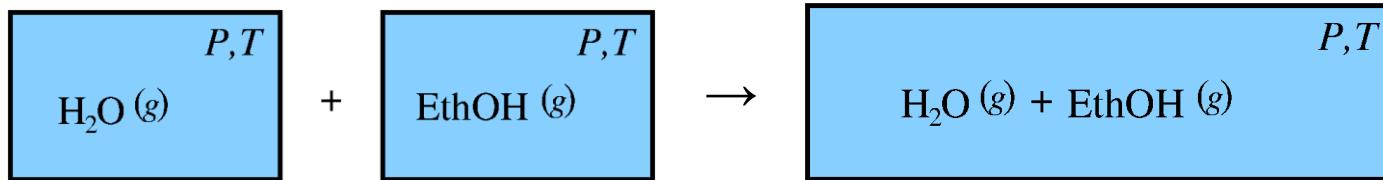
Perfect gases

$$\mu_{i,g} = \mu_{i,g}^\Theta + RT \ln a_{i,g}$$

$$G \bigg|_{P,T}^g = \mu_{A,g} n_{A,g} + \mu_{B,g} n_{B,g}$$

Mixing processes of perfect gases: binary mixture

The process of mixing two components @ P, T in gas phase



Final:

$$G_{\text{final}}^g = n_{A,g} \left(\mu_{A,g}^\Theta + RT \ln \frac{P_A}{P^\Theta} \right) + n_{B,g} \left(\mu_{B,g}^\Theta + RT \ln \frac{P_B}{P^\Theta} \right)$$

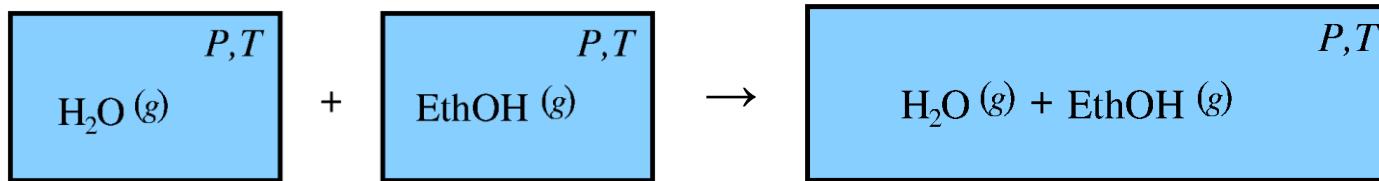
Initial:

$$G_{\text{initial}}^g = n_{A,g} \left(\mu_{A,g}^\Theta + RT \ln \frac{P}{P^\Theta} \right) + n_{B,g} \left(\mu_{B,g}^\Theta + RT \ln \frac{P}{P^\Theta} \right)$$

$$\Delta_{\text{mix}} G^g \equiv G_{\text{final}}^g - G_{\text{initial}}^g = n_{A,g} RT \ln \frac{P_A}{P} + n_{B,g} RT \ln \frac{P_B}{P}$$

Mixing processes of perfect gases: binary mixture

The process of mixing two components @ P, T in gas phase



→
$$\Delta_{\text{mix}} G^g = n_{A,g} RT \ln \frac{P_A}{P} + n_{B,g} RT \ln \frac{P_B}{P}$$

$$\frac{P_i}{P} \equiv \frac{n_i^g}{n^g} = x_i^g \quad \text{(mole fraction)}$$

in this system there is only vapour so we write

→
$$\Delta_{\text{mix}} G^g = nRT (x_A \ln x_A + x_B \ln x_B)$$

Mixing processes of perfect gases: binary mixture

Perfect gas mixing

$$\Delta_{\text{mix}} G = nRT (x_A \ln x_A + x_B \ln x_B)$$



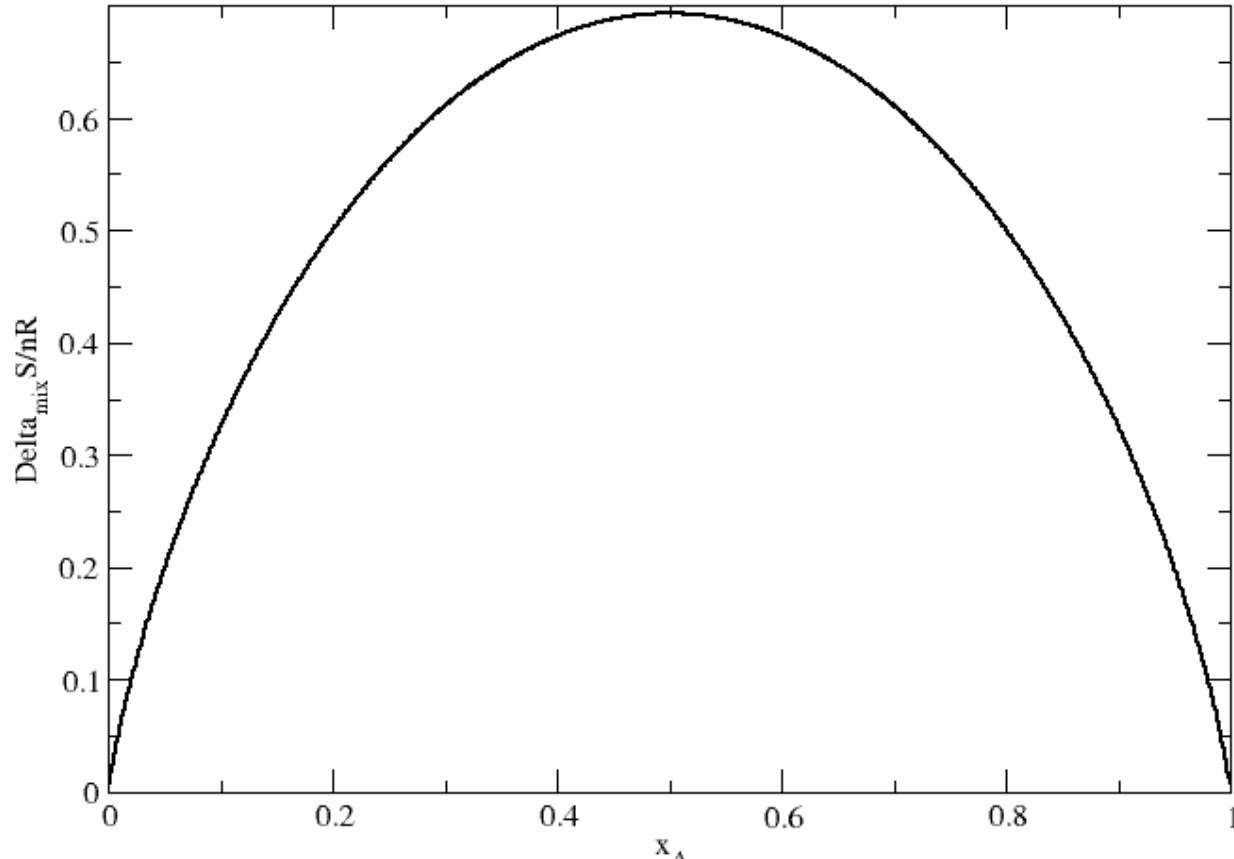
Mixing processes of perfect gases: binary mixture

Perfect gas mixing

$$\Delta_{\text{mix}} S = -nR(x_A \ln x_A + x_B \ln x_B)$$

$$\Delta_{\text{mix}} G|_T = \Delta_{\text{mix}} H - T\Delta_{\text{mix}} S$$

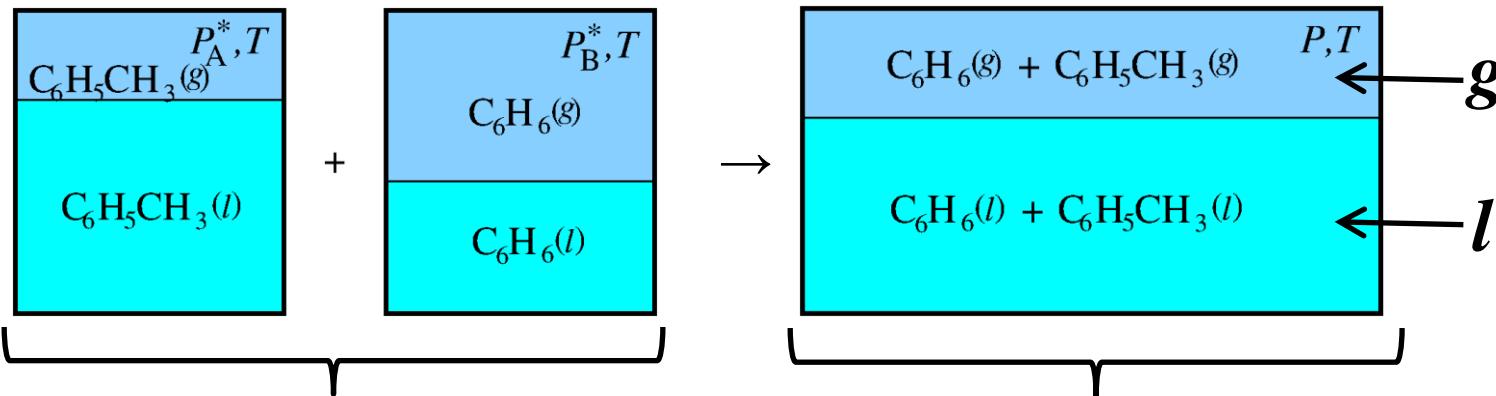
$$\Delta_{\text{mix}} H = 0$$



2nd law: Mixing is spontaneous, towards increasing entropy

Solutions and mixing processes: binary mixture

The process of mixing two components @ T in l, g phases



initial pure compounds

vapor pressures

$$P_A^*(T)$$

$$P_B^*(T)$$

final mixture

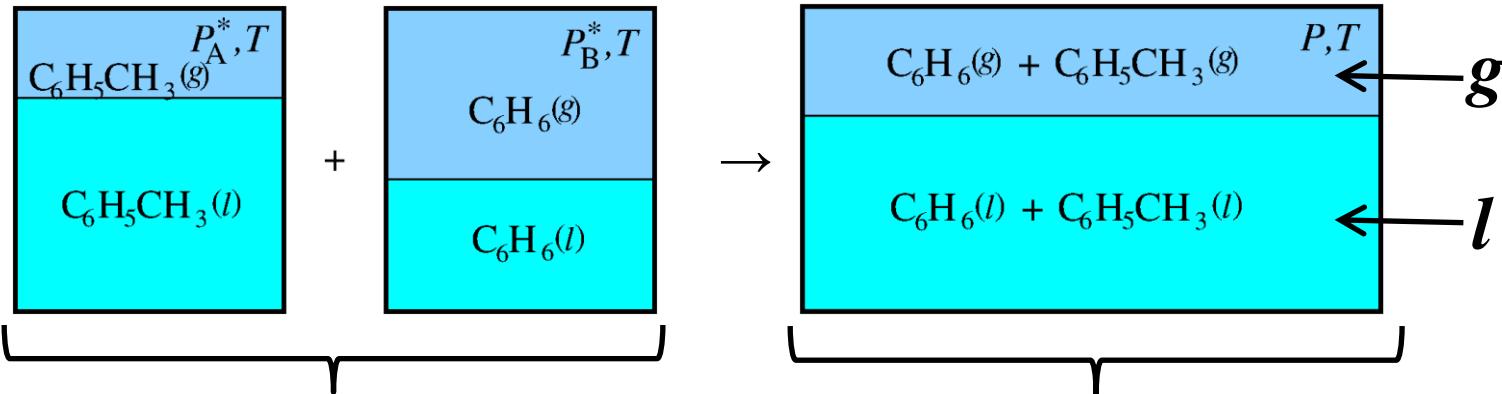
vapor pressure

$$P(T) = P_A(T) + P_B(T)$$

(* : pure compound)

Solutions and mixing processes: binary mixture

The process of mixing two components @ T in l, g phases



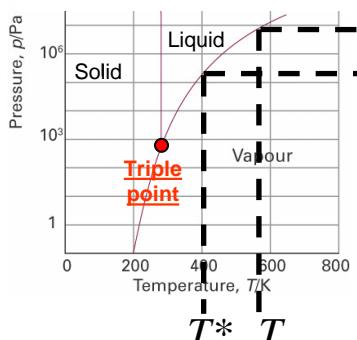
vapor pressures

$$P_A^*(T)$$

$$P_B^*(T)$$

vapor pressure

$$P(T) = P_A(T) + P_B(T)$$



Clausius-Clapeyron

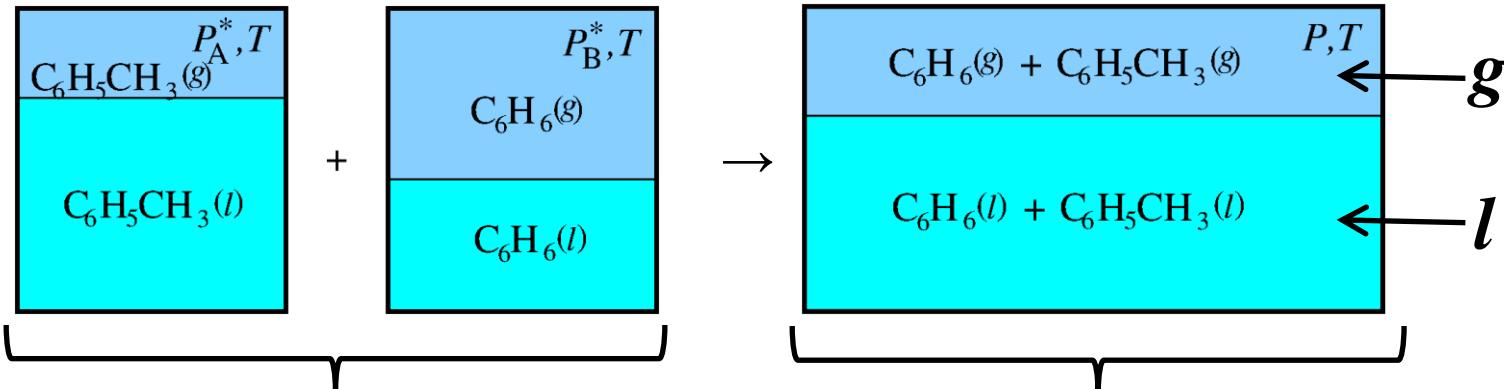
$$P_A \approx P_A^* \exp \left[- \frac{\Delta_{\text{vap}} H_A}{R} \left(\frac{1}{T} - \frac{1}{T_A^*} \right) \right]$$

(* : pure compound)

(* : reference T, P)

Solutions and mixing processes: binary mixture

The process of mixing two components @ T in l, g phases

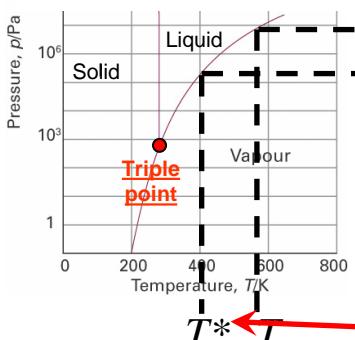


initial pure compounds

vapor pressures

$$P_A^*(T)$$

$$P_B^*(T)$$



final mixture

vapor pressure

$$P(T) = P_A(T) + P_B(T)$$

(* : pure compound)

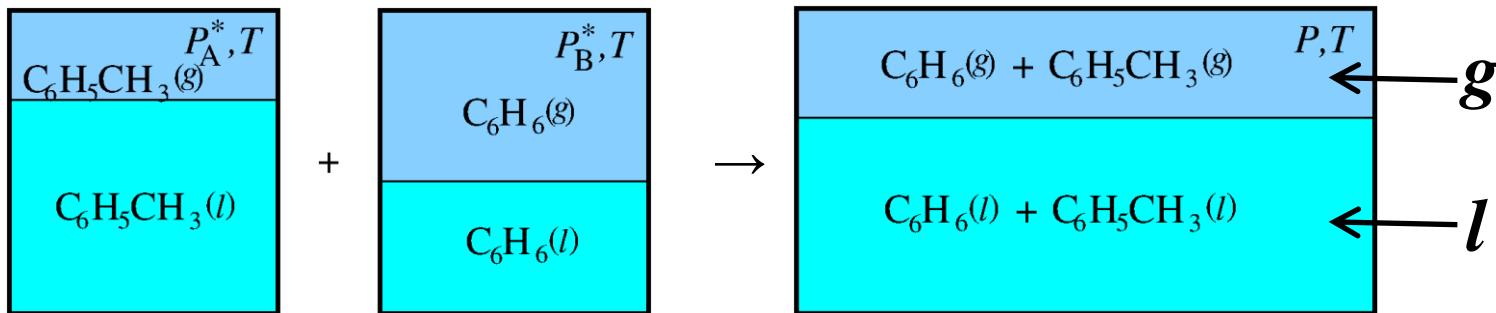
Don't confuse * and *

$$P_A \approx P_A^* \exp \left[- \frac{\Delta_{\text{vap}} H_A}{R} \left(\frac{1}{T} - \frac{1}{T_A^*} \right) \right]$$

(* : reference T, P)

Solutions and mixing processes: binary mixture

The process of mixing two components @ T in l, g phases



phase α

$$G \bigg|_{P,T}^g = \sum_i \mu_{i,g} n_{i,g} = \mu_{A,g} n_{A,g} + \mu_{B,g} n_{B,g}$$

(sim. phase l)

(slide 17: def. of μ)

Initial:

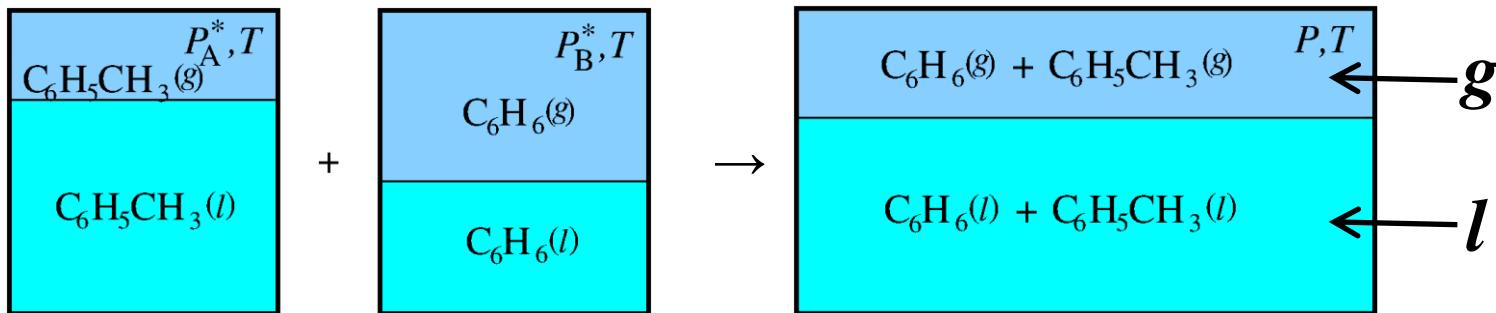
$$G_{\text{initial}}^g = n_{A,g} \left(\mu_{A,g}^\Theta + RT \ln a_{A,g}^* \right) + n_{B,g} \left(\mu_{B,g}^\Theta + RT \ln a_{B,g}^* \right)$$

(* : initial phases are pure; before mixing)

(Note: Θ per definition for pure compound; slide 18)

Solutions and mixing processes: binary mixture

The process of mixing two components @ T in l, g phases



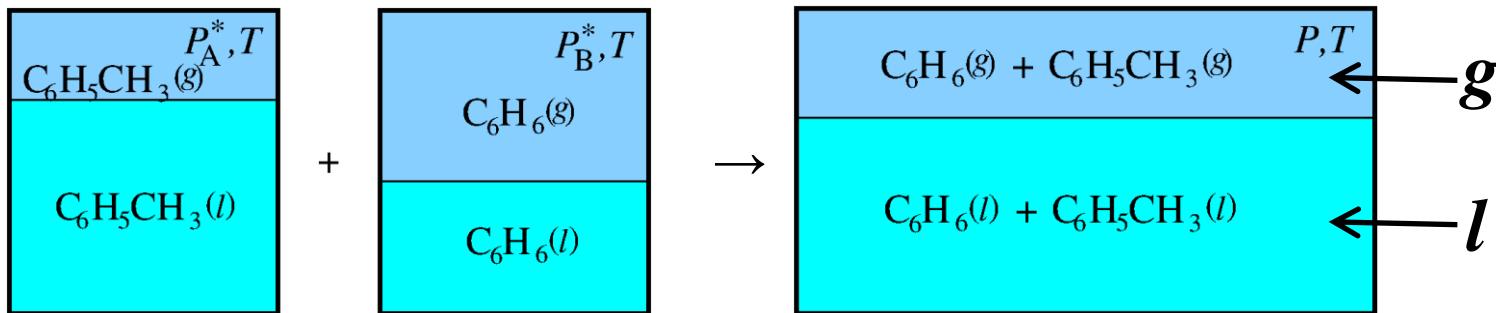
phase g

Final:
$$G_{\text{final}}^g = n_{A,g} \left(\mu_{A,g}^\Theta + RT \ln a_{A,g} \right) + n_{B,g} \left(\mu_{B,g}^\Theta + RT \ln a_{B,g} \right)$$

Initial:
$$G_{\text{initial}}^g = n_{A,g} \left(\mu_{A,g}^\Theta + RT \ln a_{A,g}^* \right) + n_{B,g} \left(\mu_{B,g}^\Theta + RT \ln a_{B,g}^* \right)$$

Solutions and mixing processes: binary mixture

The process of mixing two components @ T in l, g phases



phase α

Final:

$$G_{\text{final}}^g = n_{A,g}^f \left(\mu_{A,g}^\Theta + RT \ln a_{A,g} \right) + n_{B,g}^f \left(\mu_{B,g}^\Theta + RT \ln a_{B,g} \right)$$

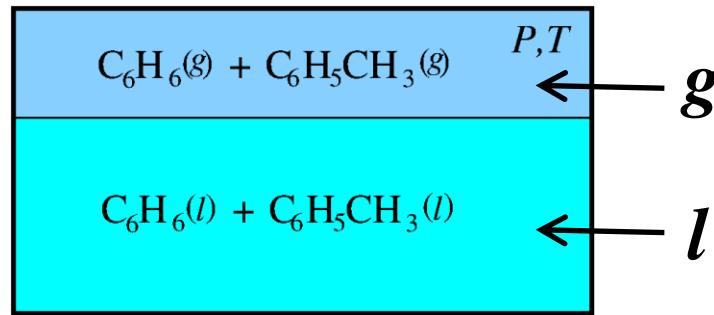
Initial:

$$G_{\text{initial}}^g = n_{A,g}^i \left(\mu_{A,g}^\Theta + RT \ln a_{A,g}^* \right) + n_{B,g}^i \left(\mu_{B,g}^\Theta + RT \ln a_{B,g}^* \right)$$

Problem: in general $n_{A,l}, n_{A,g}$ and $n_{B,l}, n_{B,g}$ will change on mixing

Solutions and mixing processes: binary mixture

The process of mixing two components @ T in l, g phases



alternative approach:

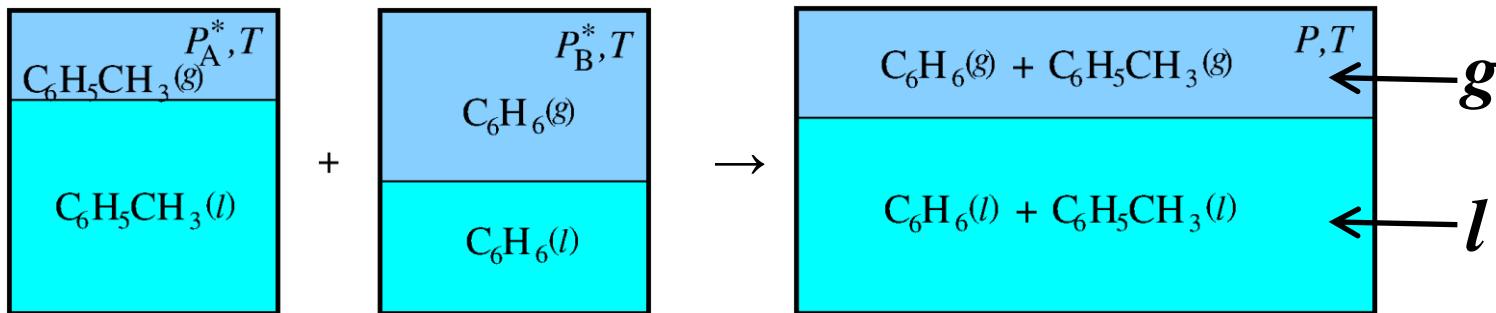
Equilibrium

$$\mu_{i,g} = \mu_{i,l}$$

$$\left. \begin{array}{l} \mu_{A,g} = \mu_{A,l} \\ \mu_{B,g} = \mu_{B,l} \end{array} \right\}$$

Solutions and mixing processes: binary mixture

The process of mixing two components @ T in l, g phases



Final: $\mu_{A,g} = \mu_{A,l}$
$$\mu_{A,g} = \mu_{A,g}^\Theta + RT \ln \frac{P_A}{P^\Theta} = \mu_{A,l} \equiv \mu_A$$

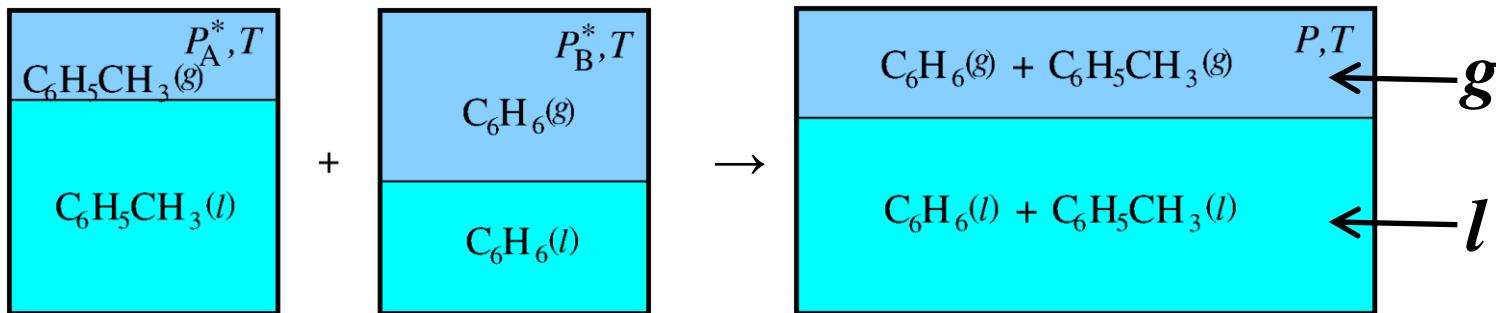
Initial: $\mu_{A,g}^* = \mu_{A,l}^*$
$$\mu_{A,g}^* = \mu_{A,g}^\Theta + RT \ln \frac{P_A^*}{P^\Theta} = \mu_{A,l}^* \equiv \mu_A^*$$

$$RT \ln \frac{P_A}{P_A^*} = \mu_A - \mu_A^*$$

(similar for B)

Solutions and mixing processes: binary mixture

The process of mixing two components @ T in l, g phases



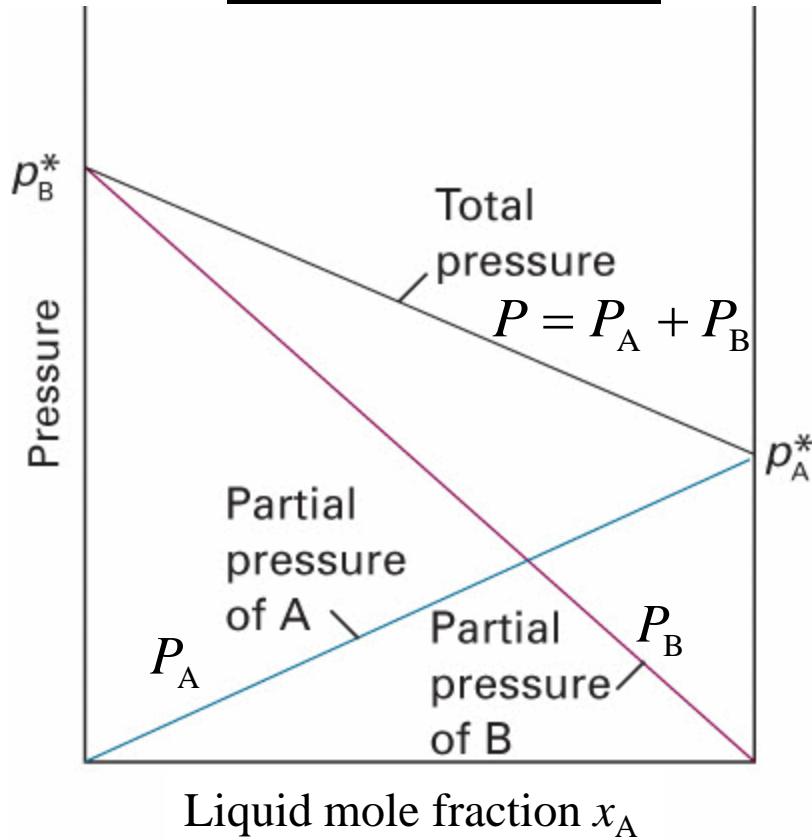
→
$$\mu_A = \mu_A^* + RT \ln \frac{P_A}{P_A^*}$$

$$\mu_B = \mu_B^* + RT \ln \frac{P_B}{P_B^*}$$

Note, in general: $\frac{P_A}{P_A^*} \neq x_A$ and $\frac{P_B}{P_B^*} \neq x_B$ like in slide 29!

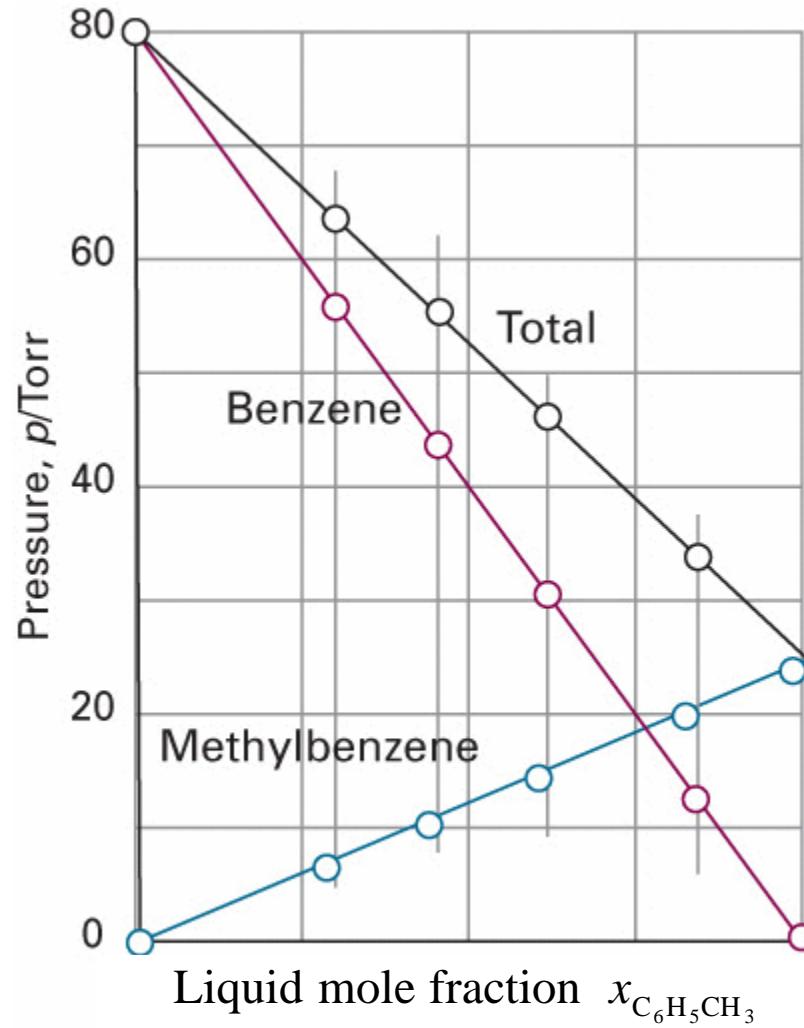
Special solutions: Ideal solutions (Raoult)

Raoult's law



$$P_{i,g} = x_{i,l} P_{i,g}^*$$

Raoult

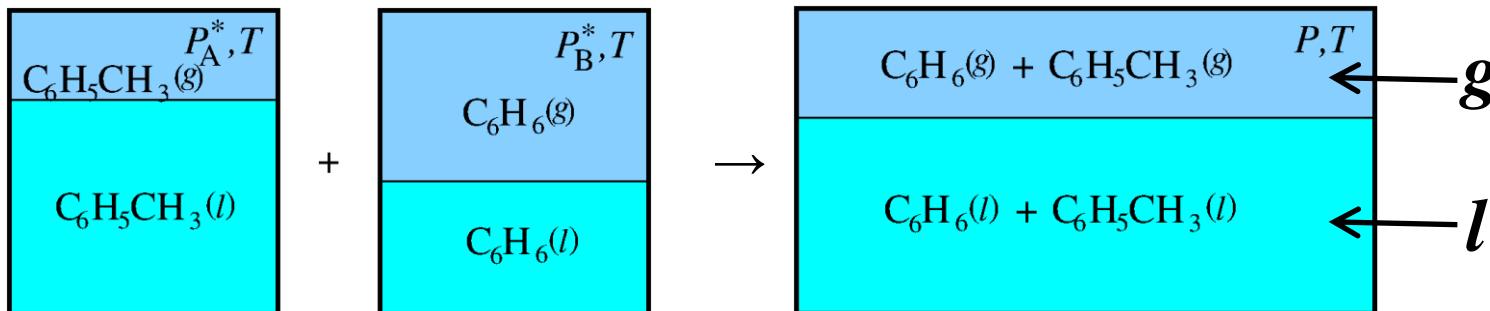


$$P = P_A + P_B$$

Dalton

Solutions and mixing processes: binary mixture

The process of mixing two components @ T in l, g phases



$$\mu_A = \mu_A^* + RT \ln \frac{P_A}{P_A^*}$$

$$\mu_B = \mu_B^* + RT \ln \frac{P_B}{P_B^*}$$

Special case:

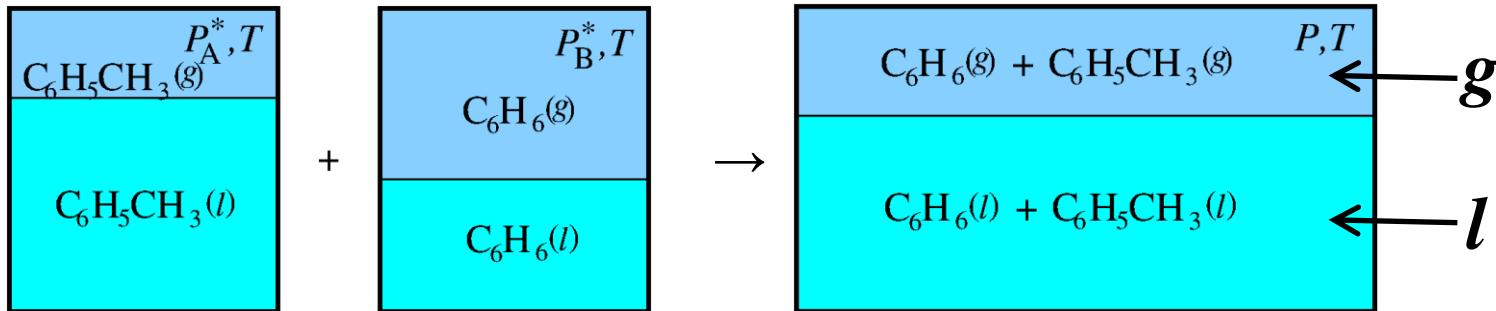
Raoult's law: Ideal solutions:

$$P_{i,g} = x_{i,l} P_{i,g}^*$$

vapor vapor
liquid

Solutions and mixing processes: binary mixture

The process of mixing two components @ T in l, g phases



Raoult's law: Ideal solutions:

Final:

$$G_{\text{final}} = n_A \left(\mu_A^* + RT \ln x_A \right) + n_B \left(\mu_B^* + RT \ln x_B \right)$$

Initial:

$$G_{\text{initial}} = n_A \mu_A^* + n_B \mu_B^*$$

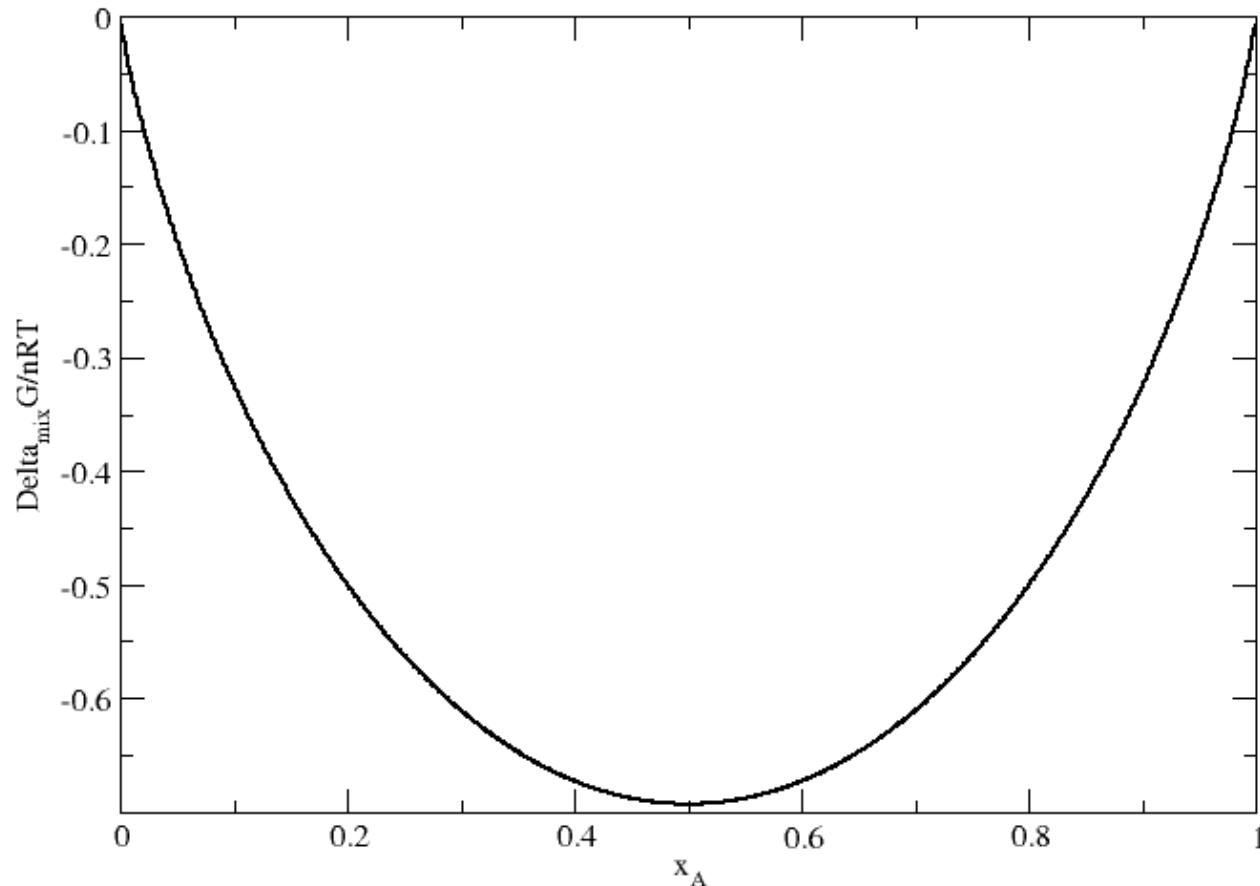
$$\Delta_{\text{mix}} G = G_{\text{final}} - G_{\text{initial}} = nRT (x_A \ln x_A + x_B \ln x_B)$$

Gibbs free energy of mixing for ideal solutions

Solutions: Ideal solutions (Raoult)

Ideal liquid mixing

$$\Delta_{\text{mix}} G = nRT (x_A \ln x_A + x_B \ln x_B)$$

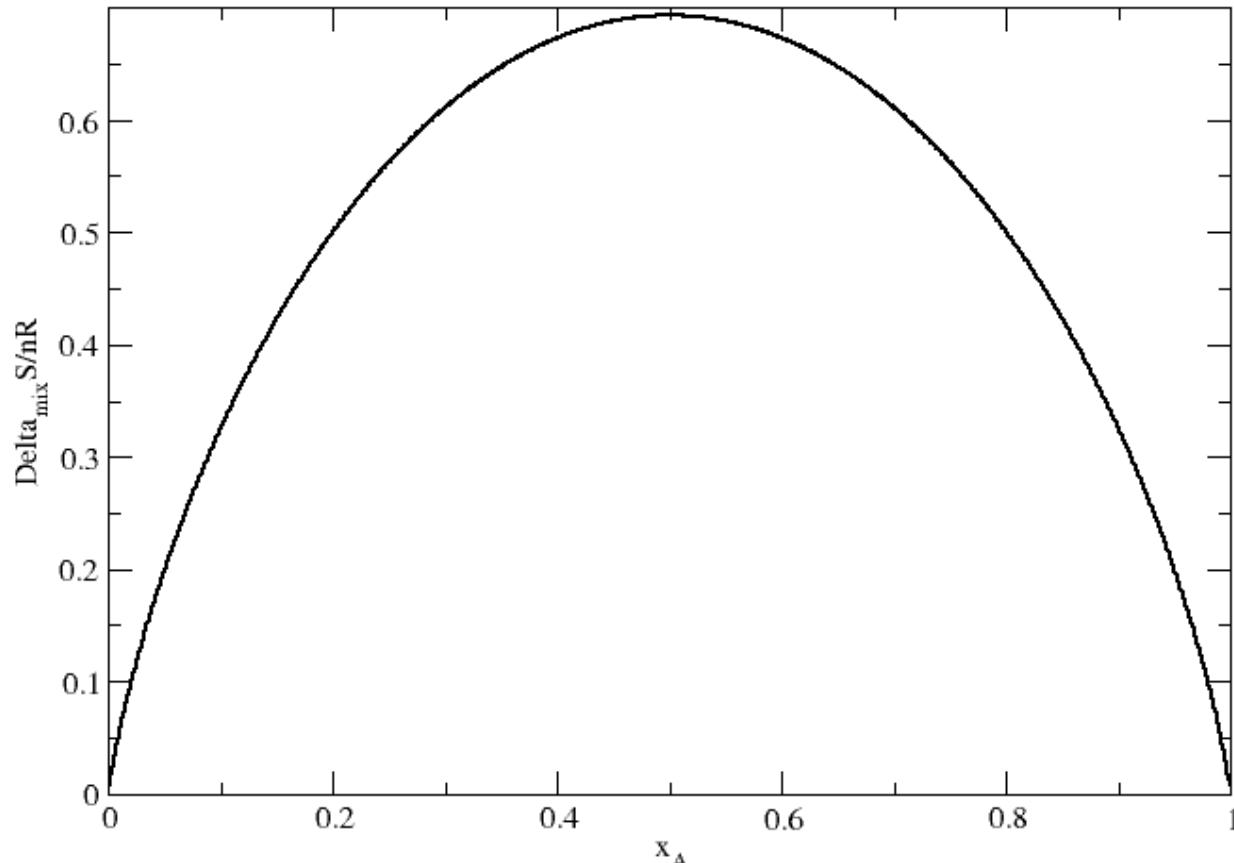


Solutions: Ideal solutions (Raoult)

Ideal liquid mixing

$$\Delta_{\text{mix}} S = -nR(x_A \ln x_A + x_B \ln x_B)$$

$$\Delta_{\text{mix}} H = 0$$



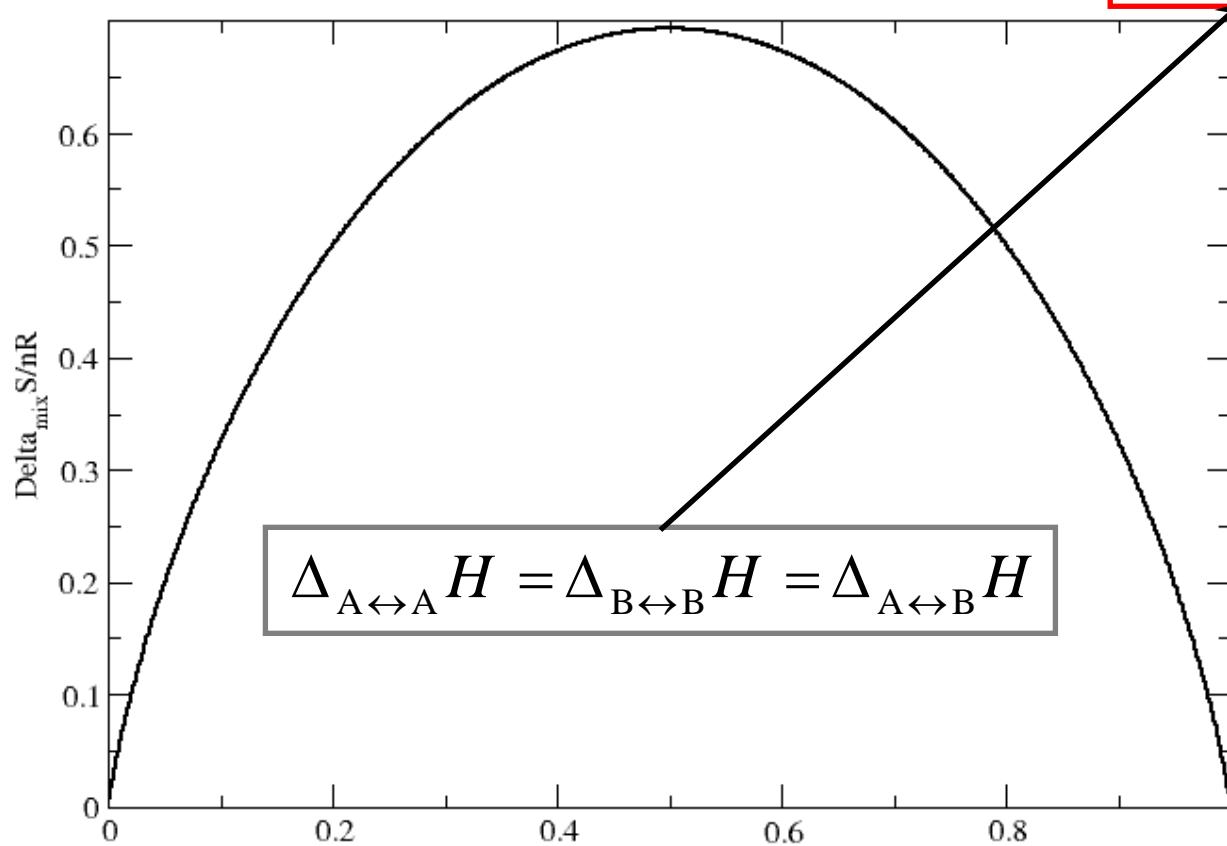
2nd law: Mixing is spontaneous, towards increasing entropy

Solutions: Ideal solutions (Raoult)

Ideal liquid mixing

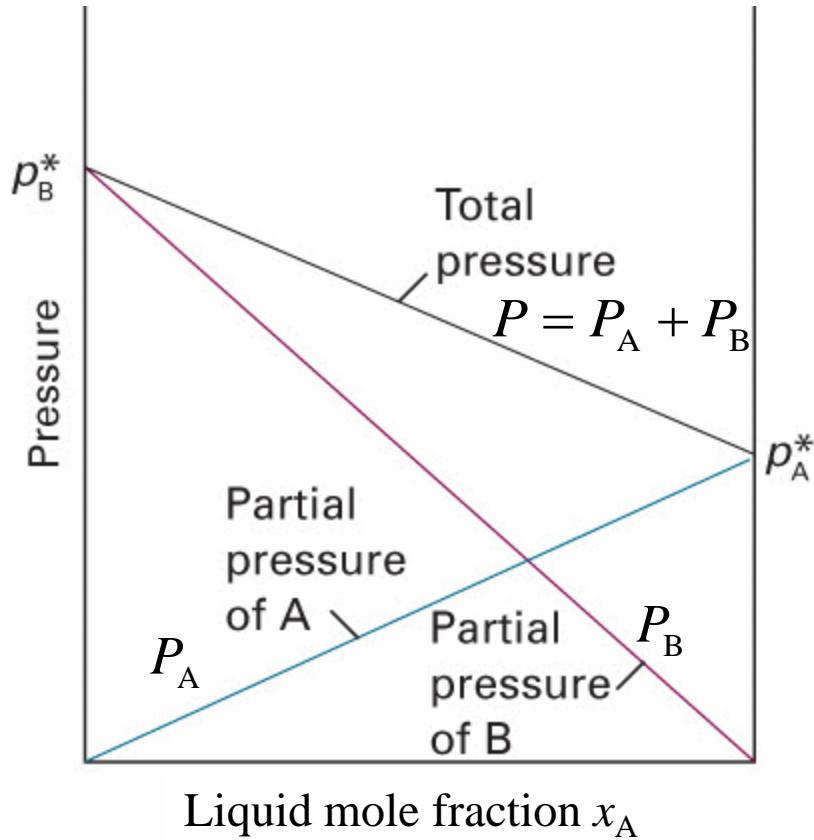
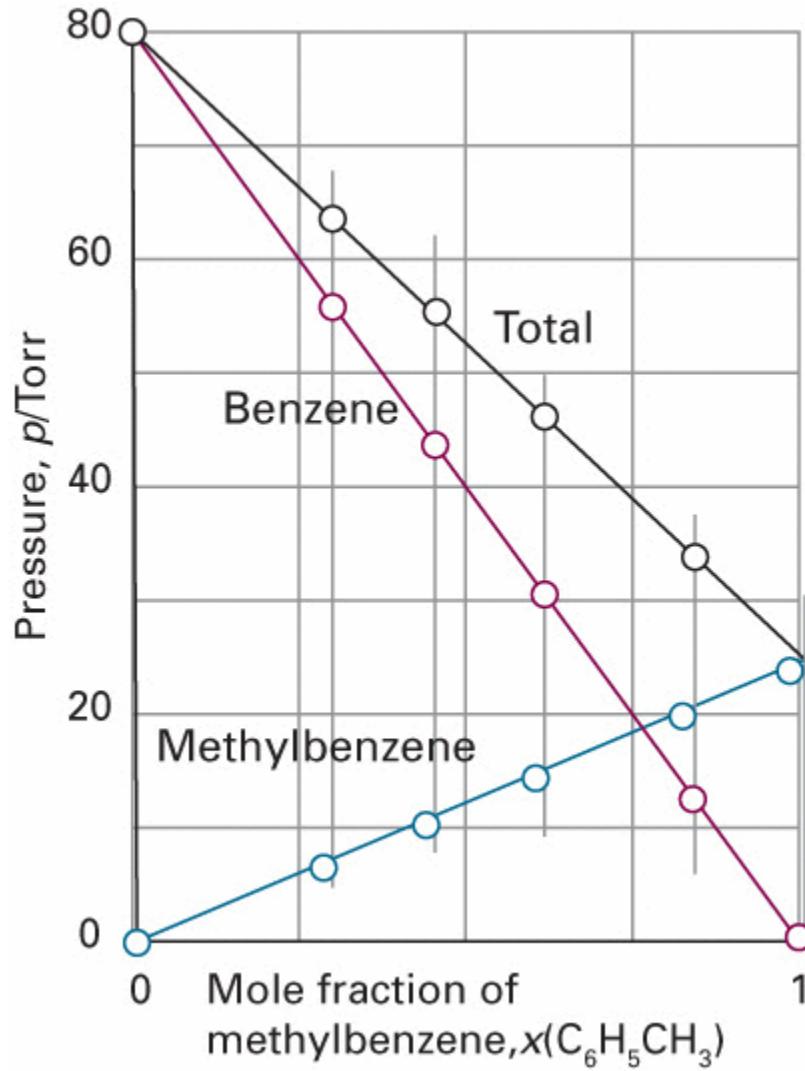
$$\Delta_{\text{mix}} S = -nR(x_A \ln x_A + x_B \ln x_B)$$

$$\Delta_{\text{mix}} H = 0$$



2nd law: Mixing is spontaneous, towards increasing entropy

Solutions: Ideal solutions (Raoult)



Ideal mixing (Raoult)

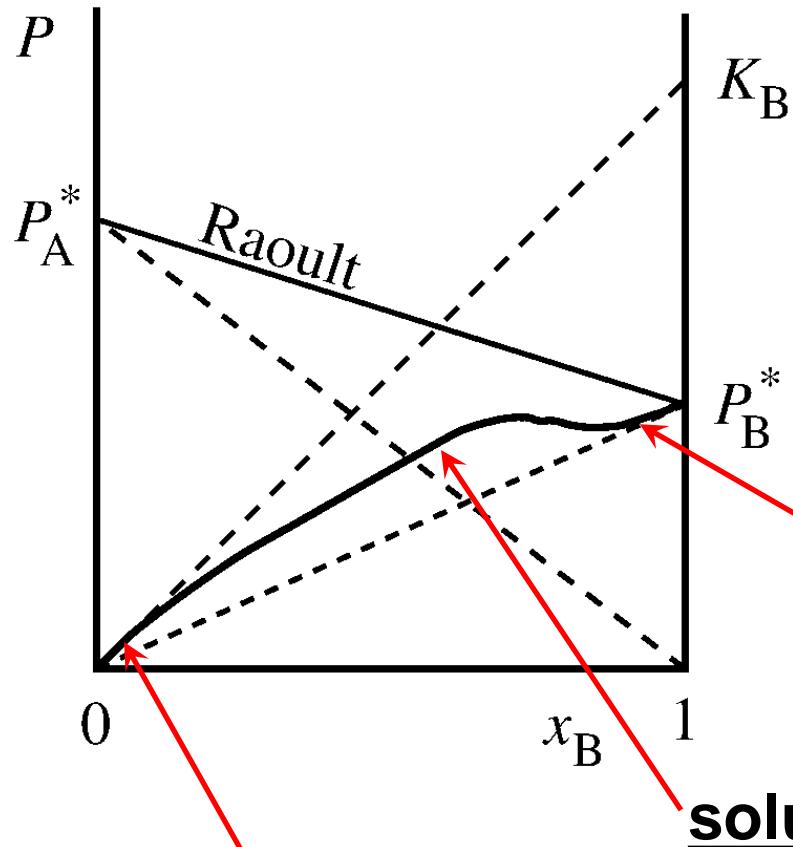
Exercise 11

$$P_A = x_A P_A^*$$

$$P_B = x_B P_B^*$$

Solutions: Ideal-dilute solutions

Non-ideal mixing



$$P_B = x_B K_B$$

Ideal-dilute solutions:

Henry constant K_B

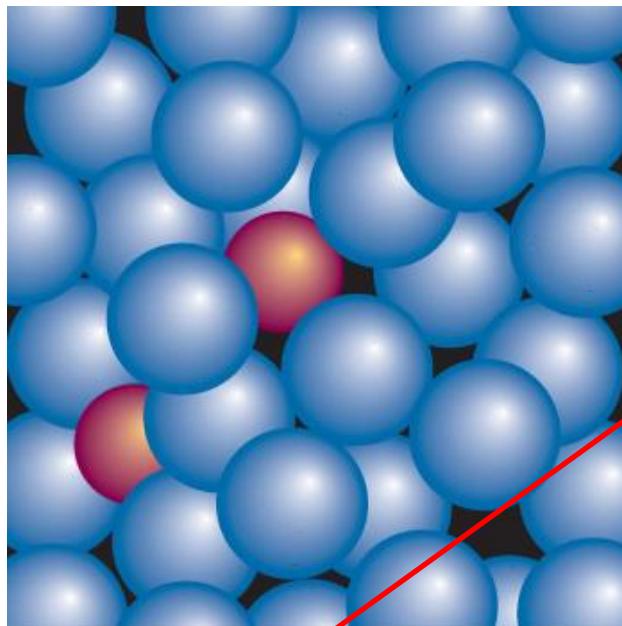
almost pure solvent B

solute B expelled from solution

very low concentration of solute B

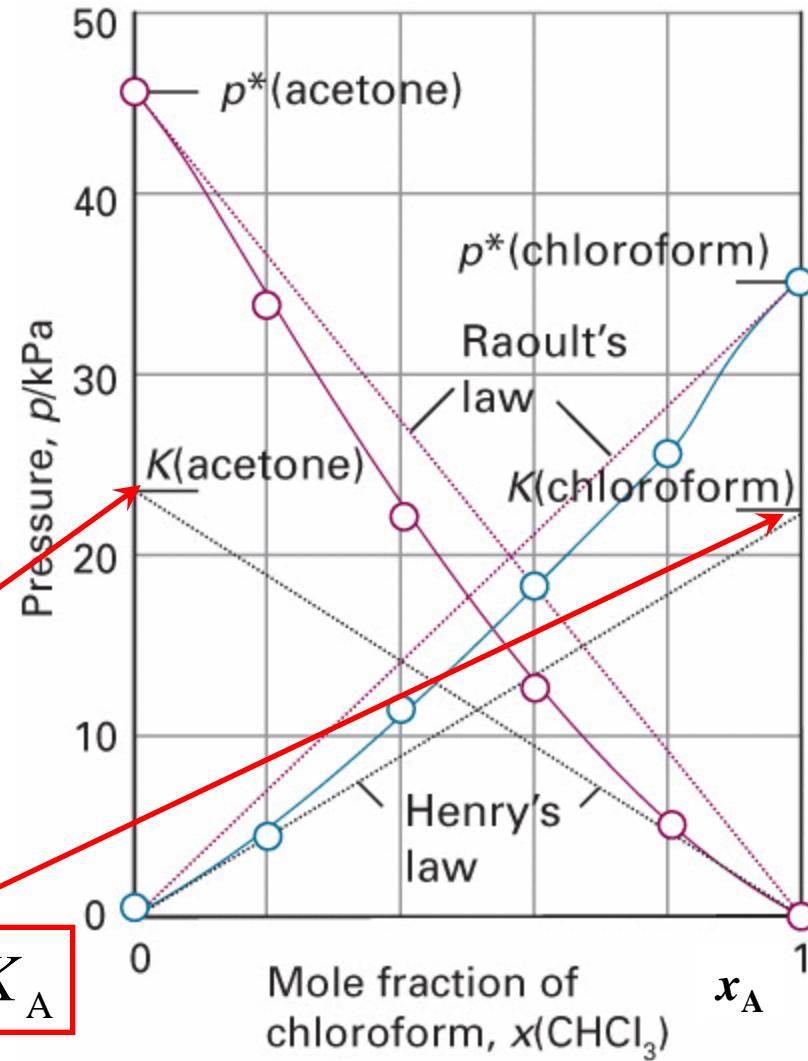
Solutions: Ideal-dilute solutions

Non-ideal mixing



$$P_B = x_B K_B$$

$$P_A = x_A K_A$$

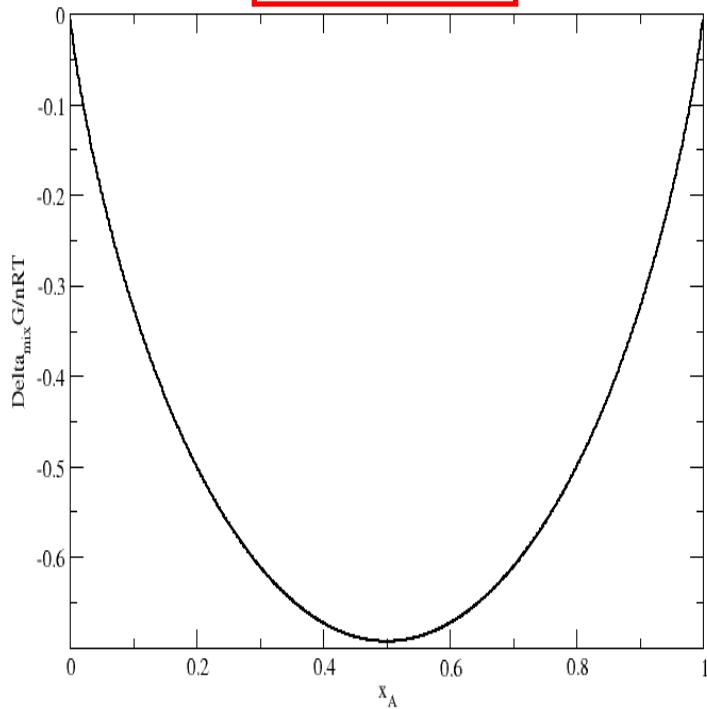


Ideal-dilute solutions: Henry constant K_B

Solutions: Real solutions

ideal mixing

$$\Delta_{mix} H = 0$$

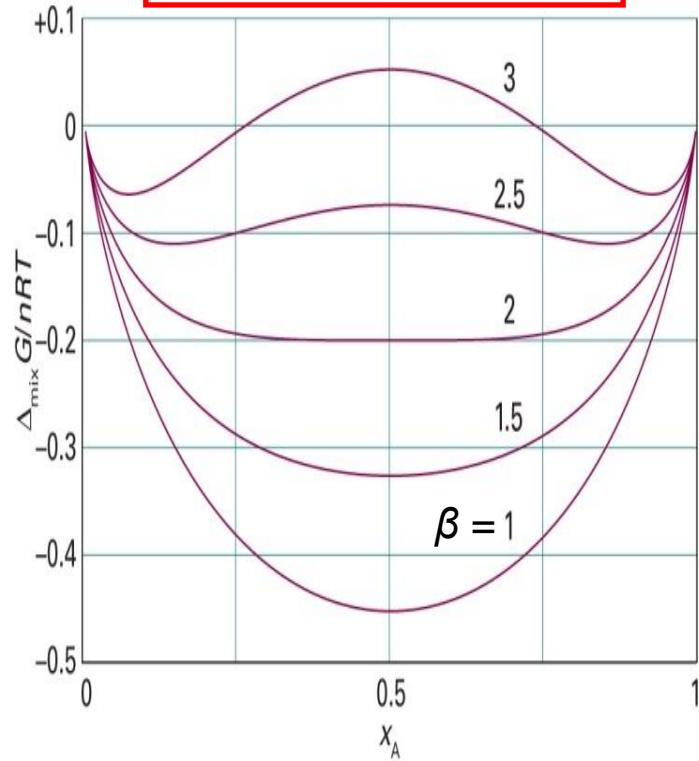


$$\Delta_{mix} G = nRT \left[x_A \ln x_A + x_B \ln x_B \right]$$

$$\Delta_{mix} S = -nR \left[x_A \ln x_A + x_B \ln x_B \right]$$

Non-ideal mixing

$$\Delta_{mix} H = n\beta RT x_A x_B$$



Solutions: Real solutions

(Excess functions)

$$G^E \equiv \Delta_{\text{mix}} G - \Delta_{\text{mix}} G^{\text{ideal}}$$

$$G^E = H^E - TS^E$$

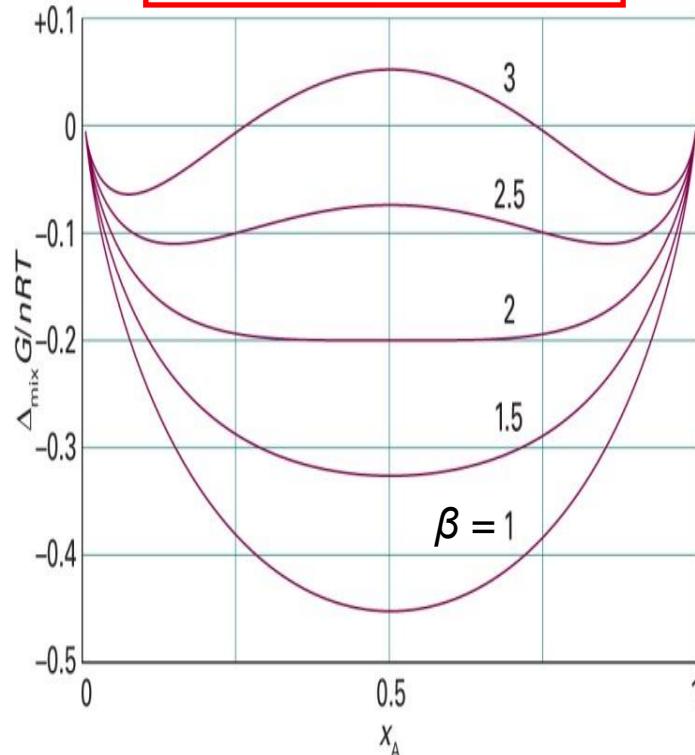
$$H^E = \Delta_{\text{mix}} H - \Delta_{\text{mix}} H^{\text{ideal}} = \Delta_{\text{mix}} H$$

$$S^E = \Delta_{\text{mix}} S - \Delta_{\text{mix}} S^{\text{ideal}}$$

$$\Delta_{\text{mix}} S^{\text{ideal}} = -nR[x_A \ln x_A + x_B \ln x_B]$$

Non-ideal mixing

$$\Delta_{\text{mix}} H = n\beta RT x_A x_B$$



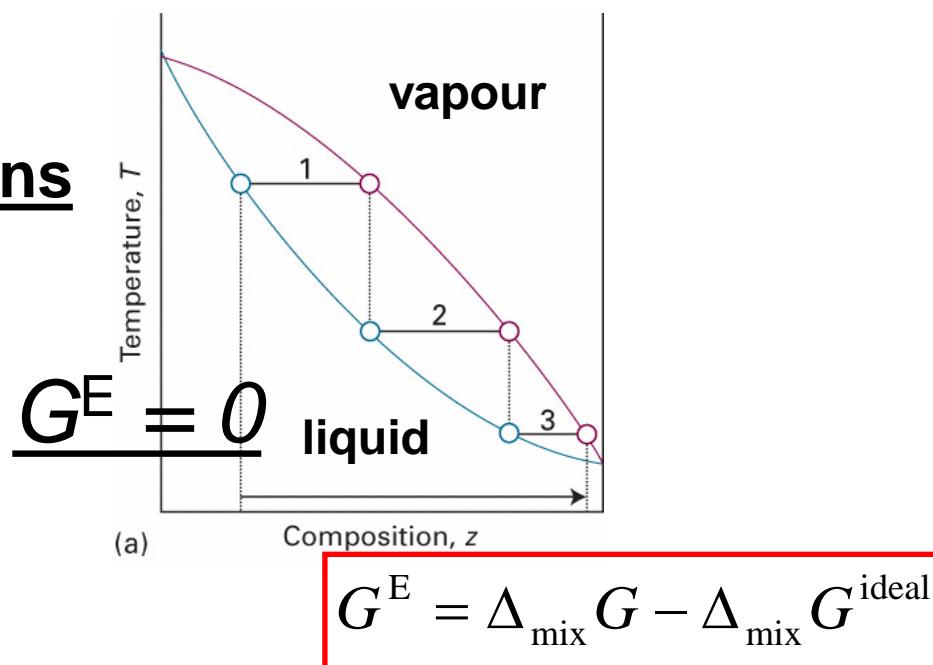
Exercise 12

Temperature-composition diagrams

Sneak Preview

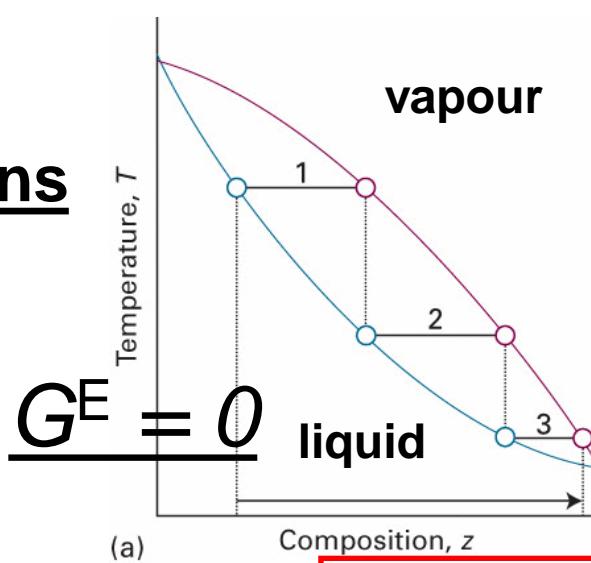
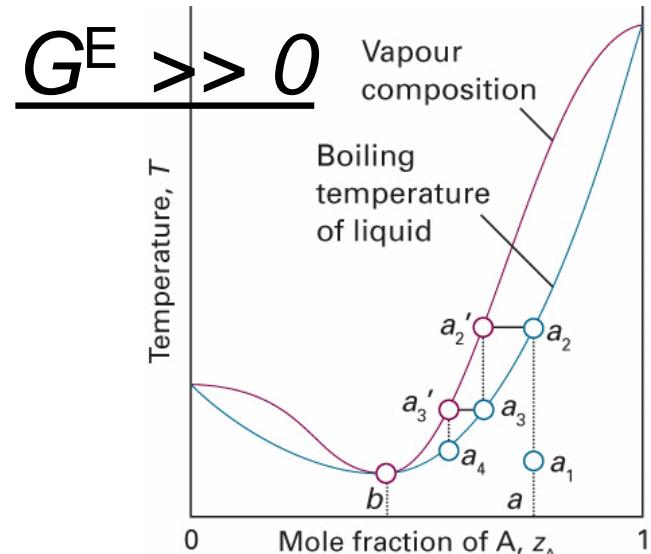
Temperature-composition diagrams

ideal solutions

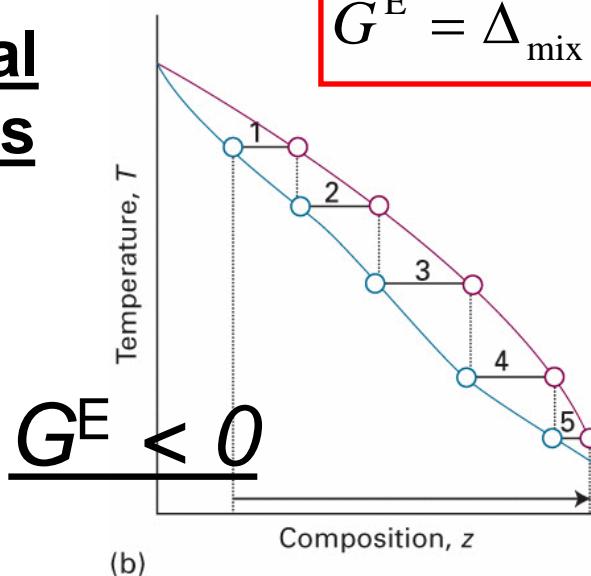


Temperature-composition diagrams

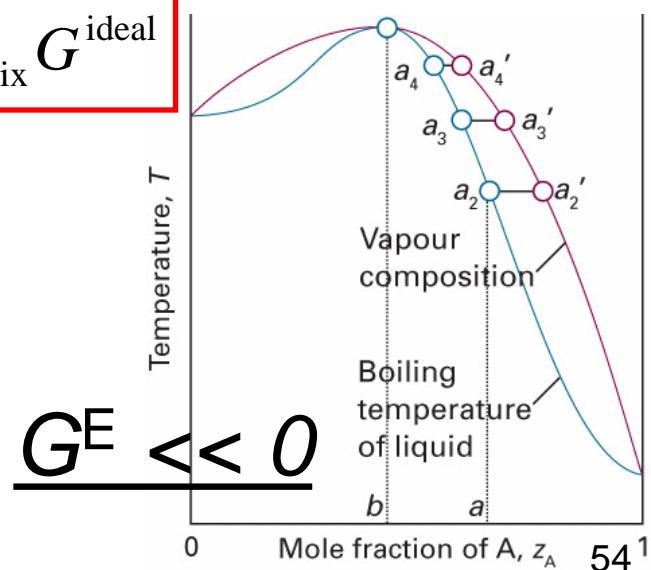
ideal solutions



Non-ideal solutions

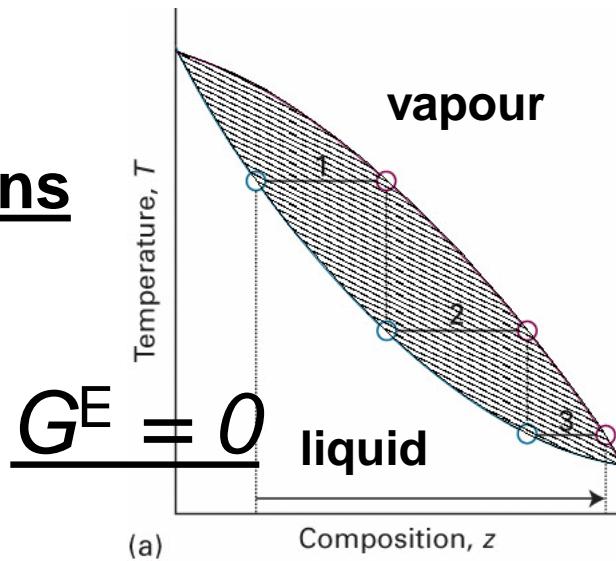


$$G^E = \Delta_{\text{mix}} G - \Delta_{\text{mix}} G^{\text{ideal}}$$

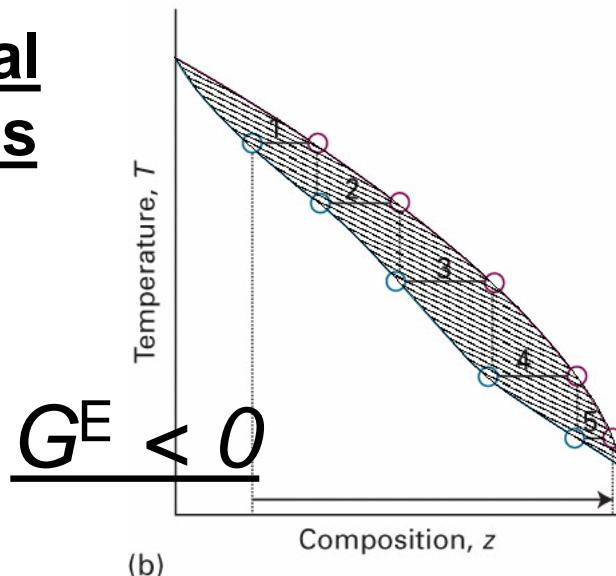


Temperature-composition diagrams

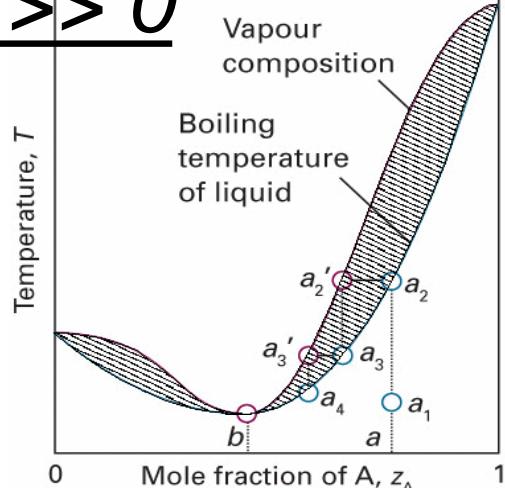
ideal solutions



Non-ideal solutions



$$G^E \gg 0$$



$$G^E \ll 0$$

