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Phase diagrams of binary systems
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Partial molar quantities

Volume, V

b

Amount of A, n,

I B el

a
Amount of component 7; ——

V =n,V, +nV, =n[xV, +x,V,]

G =N,y +Ngllg = n[XA:uA T XB:uB]
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MixXing processes of perfect gases:binary mixture

Perfect gas mixing @ P, T

P,T P,T P, T
H,0 © + | EthoH © —> H,0 (©) + EthOH ©

A_ G =nRT (x, Inx, +x;Inxg)

g

ideal
A_ S = _nR(x, Inx, +x;Inxg)

Amix H ideal _ O

= = X.| Mole fraction




Mixing processes of |,g equilibrium:binary mixture

Ideal solution @ T A G =nRT (x, In X, + %, In x;)
P..T PiT
C.HCH,©" B
CeH ®
* ¥
CHLCH,Y CH ) P Total
pressure
© P=P, +P,
|
L __f..-""f p.f.
PT Partial o
CH¢® + GHsCH,©® pressure e
P of Af}f Partial .
CHD + GH;CH,( A pressure
¥ il of B
Liquid mole fraction x,
Exercise 11 | ldeal solution (Raoult) |P, = x, P, | |P, = X, P.| *




Thermodynamics of ideal mixing

(perfect gas mixtures and ideal solutions)

ideal
G =nRT [x, In X, + X In ;]

AmiG/INRT

ideal
A S =—nR[x, In X, + X In x;]




Thermodynamics of non-ideal mixing liquids

almost pure solvent A ldeal-dilute solution
PB = XBKB 1 Kp

* .’
/7

~

0\ xBl

very low concentration of solute B

solute B expelled from solution

Ideal-dilute solutions: Henry constant Ky |Exercise 13 | ©




Lecture 4

Vapour-liquid diagrams of binary systems




Vapour-liquid diagrams of binary systems

PT ‘ Fixed T ‘ |deal solution
A® +B@ (Raoult)
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Vapour-liquid diagrams of binary systems

PT ‘ Fixed T ‘ |deal solution
A® +B@ (Raoult)

Liquid

A + BQ)

Pressure, p

s

0 Mole fraction of A, x, 1

P =P, + P :XAPA*"l'XBPE:




Pressure, p

Vapour-liquid diagrams of binary systems
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Pressure, p

Vapour-liquid diagrams of binary systems
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Pressure, p

Vapour-liquid diagrams of binary systems
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Pressure, p

Vapour-liquid diagrams of binary systems
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Pressure, p

Vapour-liquid diagrams of binary systems
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Pressure, p

Vapour-liquid diagrams of binary systems

Mole fraction of A in the vapour, y,
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—» Pressure P

Vapour-liquid diagrams of binary systems
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—» Pressure P

Vapour-liquid diagrams of binary systems
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—» Pressure P

Vapour-liquid diagrams of binary systems

Liquid

Vapour

#
PA

>

I
na
(TN
N

ldeal solution

—» Pressure P

—» Pressure P

A
Liquid
Vapour
0 | — yA 1
o P,S Py *
Py +(P =P )y,
P*
A =412
PB 18




—» Pressure P

Vapour-liquid diagrams of binary systems
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Vapour-liquid diagrams of binary systems
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| ever rule
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| ever rule
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C=2
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Pressure-composition diagrams
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Pressure-composition diagrams
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Pressure-composition diagrams
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Temperature-composition diagrams
(important for distillation processes)
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Temperature-composition diagrams

Pressure

femp Fixed P

Temperature-composition diagrams
(important for distillation processes)
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Pressure-composition diagrams
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Temperature-composition diagrams
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Temperature-composition diagrams
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Temperature-composition diagrams
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Temperature-composition diagrams
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C =2 Temperature-composition diagrams

G =0
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Excess Gibbs free enerqgy
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GE is the excess Gibbs free energy of the liguid mixture
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C =2 Temperature-composition diagrams
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C =2 Temperature-composition diagrams
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C =2 Temperature-composition diagrams
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C

2 Temperature-composition diagrams
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Temperature
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Temperature
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Excess functions
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Benzene/cyclohexane

Cl,ethene/cyclopentene
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Excess functions

Amix H _TAmXS — AmXG Regular solution

miX miX
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mx
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HE/nRT

Excess functions

Amix H _TAmXS — AmXG Regular solution
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HE/nRT
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HE/nRT

Excess functions
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Liquid-liguid separation for Regular solution

H® =npRTX, X,

Model reqular solution

often:

SO
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Liquid-liguid separation for Regular solution

H® =npRTX, X,

Model reqular solution

often:

SO
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Liquid-liguid separation for Regular solution

H® =npRTX, X,

Model reqular solution

often:

SO
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Liquid-liguid separation for Regular solution

H® =npRTX, X,

Model reqular solution
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Liquid-liguid separation for Regular solution

l

T
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05 —my

Liquid-liguid separation

H® =npRTX, X,

. ften: = — T=—
Model reqgular solution often: |/ kT >0 Lk
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Liquid-liguid separation for quasi reqular solution

Nitrobenzene in hexane




Liquid-liguid separation for quasi reqular solution

Composition of Composition
one phase of second

Temperature, T =
T

nyly = nyl,

Lever rule o Z, _ E
Mole fraction of nitrobenzene, x|

Nitrobenzene in hexane
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Liquid-liguid separation for quasi reqular solution

Composition of Composition| ypper Critical temperature

one phase of second /

Tdse

Temperature, T =
T

nyly = nyl,

Lever rule o Z, _ E
Mole fraction of nitrobenzene, x|

Nitrobenzene in hexane
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Temperature, /°C
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