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Summary of Lecture 6 

Electrolytic solutions and Electrochemistry 
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Electrolytic solutions and Electrochemistry 
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Mean activity coefficient 
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Thermodynamics of surfaces and interfaces 

Lecture 7 

Statistical Thermodynamics 

Entropy revisited 

Atkins (ed. 12, 11):  §14C.2-C.4  + 4B.1(c) + Study Guide: P.20 

Atkins (ed. 10):   §16C.2-C.4  + 4.4(c)    + Study Guide: P.20 

Atkins (ed. 9):   §17.8-17.10 + 4.4(c)   + Study Guide: P.20 

Study Guide: P.21-22 

Study Guide: P.22-24 



Na2ClO3 crystals in a saturated solution 

  

Saturated 

solution 
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Optically left 

rotating crystal 

Optically right 

rotating crystal 

Optical active crystals under polarizing microscope 

Thermodynamics of surfaces and interfaces 



  

Wilhelm Ostwald 

Ostwald ripening 

(1896) 
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Large crystals grow; small crystals dissolve 

T = 0 T = 1 day 

(1853-1932) 

Na2ClO3 crystals in a saturated solution 



  Equilibrium: one single crystal of single handedness! 

T = 0 T = 1 day 10 days 30 days 
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Na2ClO3 crystals in a saturated solution 
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T = 0 T = 1 day 10 days 30 days 

Equilibrium: one single crystal of single handedness! 

Na2ClO3 crystals in a saturated solution 



Gibbs-Thomson effect 

Interfacial (free) energy between two phases 
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σ : Interfacial surface 

A : Helmholtz free energy 

dWPdVSdTdA 

solution 

crystal 



Gibbs-Thomson effect 

Interfacial (free) energy between two phases 

10 

σ : Interfacial surface 

A : Helmholtz free energy 
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Gibbs-Thomson effect 

Interfacial (free) energy between two phases 

relevant for P >1 
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dWPdVSdTdA  σ : Interfacial surface 

γ : Interfacial or surface tension 

 

𝑑AT,V = dWσ ≡ γdσ 

Surface tension γ tends to reduce σ   

γ (Jm-2): surface tension 

σ (m2): surface 

0



Gibbs-Thomson effect 

Interfacial (free) energy between two phases 

relevant for P >1 

P =2,3 P =2,3 P =1 12 

dWPdVSdTdA  σ : Interfacial surface 

γ : Interfacial or surface tension 𝑑AT,V = dWσ ≡ γdσ 



Equilibrium: 13 

Gibbs-Thomson effect: Laplace equation 

Interfacial or surface tension γ>0 tends to reduce σ    

0
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Relation between Pin, Pout and γ ? 

Equilibrium: 

smallest surface σ is spherical    isotropic γ 
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Gibbs-Thomson effect: Laplace equation 
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water 
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r
PP

2
outin 

 (293 K, in air) 

Gibbs-Thomson effect: Laplace equation 

Surface tension γ (Jm-2 = Nm-1) 

Laplace equation 
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Surface tension and capillary action  



Surface tension and capillary action  

17 

Stronger cohesive force within the liquid, e.g. Hg/glass 

Adhesive force between liquid and capillary, e.g. H2O/glass 

capillary rise capillary depression 



Surface tension and capillary action  

Adhesive force between liquid and capillary 
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Surface tension and capillary action  
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Surface tension and capillary action  
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Exercise 26 

Adhesive force between liquid and capillary 
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Surface tension and capillary action  
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 tries  to reduce its 

corresponding surface 
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Surface tension and capillary action  
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equilibrium situations  
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(γ is always trying to reduce the corresponding surface)  
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Surface tension and wetting 



sllgsg

lgsgsl

adh

W
w 











clgslsg  cos

specific  

work (J/m2) 

of adhesion 

horizontal  

Force (N/m) 

balance 

(γ is always trying to reduce the corresponding surface)  

(equilibrium)  

24 

Surface tension and wetting 
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Surface tension and wetting 
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Kelvin equation 



Kelvin equation and nucleation 
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nucleation barrier for condensation (g  l) @ T < Tvap 

(pure compound) 
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Kelvin equation and nucleation 
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Kelvin equation 

small droplets evaporate 

condensation nucleation barrier 
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Consider an undercooled gas: 
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Kelvin equation and nucleation 
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Nucleation of solid phase β(s) from liquid α(l)  

β 

• revert to Gibbs free energy 

• classical nucleation theory 

– spherical nucleus, radius r 

– driving force:  

– surface free energy: γ 

– molar volume of phase β: Vm 

  

30 

α 

β γ 
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31 0  (if                           ) 

• revert to Gibbs free energy 

• classical nucleation theory 

– spherical nucleus, radius r 

– driving force:  

– surface free energy: γ 

– molar volume of phase β: Vm 

  
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Nucleation of solid phase β(s) from liquid α(l)  
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Nucleation of solid phase β(s) from liquid α(l)  

0  (if                           ) 
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critical radius rc: 

nucleation barrier depends on 

supersaturation (Δμ = Δμ(T )) 

-low Δμ : no nucleation 

-high Δμ : easy nucleation 

Nucleation of solid phase β(s) from liquid α(l)  

0  (if                           ) 
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Statistical Thermodynamics: Boltzmann distribution 
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Statistical Thermodynamics: History 

Carnot 1824 

Clausius 1856 Boltzmann 1896 

Gibbs 1870 

WkS ln
TSHG 

T

dQ
dS

rev

efficiency 

entropy 

free energy 

statistical 

thermodynamics 
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Statistical Thermodynamics: History 

Quantum Mechanics: 

discrete energy spectrum 

ivE )(

Source: https://en.wikipedia.org/wiki/Discrete_spectrum 

The discrete part of the emission spectrum of hydrogen 

εi is the energy of a molecule in  quantum state or quantum level  i 

 ,,,0 210 discrete energy levels 
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Statistical Thermodynamics:Boltzmann distribution 

Boltzmann distribution: 
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Boltzmann distribution: 
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Statistical Thermodynamics:Boltzmann distribution 
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Boltzmann distribution: 
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Statistical Thermodynamics:Boltzmann distribution 
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Study Guide page 21 
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Statistical Thermodynamics:Boltzmann distribution 
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Chance Pi of a molecule to be in a 

quantum state i with energy εi 

Alternative  

interpretation 
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choice 

Two level system 

Exercise 28-29 

Statistical Thermodynamics:Boltzmann distribution 
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Ludwig Boltzmann 

1844-1906 

WkS ln

S : measure for “statistical mixedupness” 

1877: Boltzmann entropy 

W is the number of micro states of a 

system in equilibrium as a macro state 

Statistical Thermodynamics: Boltzmann entropy 

smallW

largeW

S increases with T 

Particle velocity v increases with T 
  00 TS 

0
0
 
T

S
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WkS ln

+ → 11 lnWkS 
22 lnWkS 

21WWW 

SWkWWkWkWkSS  lnlnlnln 212121

(ideal mixtures) 

(only for ideal mixtures) 

Statistical Thermodynamics: Boltzmann entropy 
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Statistical vs. Classical Thermodynamics 

Is entropy s a measure for disorder or chaos? 

To test this we perform three “Gedanken” experiments 

(Study Guide: p.22-24) 

- Classical thermodynamics 

- Perfect gases A and B 

- Clever design of experiment 
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Classical: Entropy change for changing volume 

Mechanical coupling 

Semi-permeable for A Semi-permeable for B (fixed position) 

1 
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A

'

A VV 

B

'

B VV 

0BA  dVdV

Reversible, isothermal, isochoric “compression” 

0 PdVdW(for both gases) 

0dT 0dU

0S0
revrev

BA
 dQdQdWdQdU 

Classical: Entropy change for changing volume 

Mechanical coupling 

Semi-permeable for A Semi-permeable for B (fixed position) 

1 



0 iSReversible, isothermal, isochoric “compression” 

ii VV 
'
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1 
Classical: Entropy change for changing volume 



Reversible, isothermal, isobaric expansion 

48 

1 

2 Mechanical coupling 

Semi-permeable membranes 

Reversible, isothermal, isochoric “compression” 

Classical: Entropy change for changing volume 

ii VV 
'

0 iS
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1 

2 Mechanical coupling 

Semi-permeable membranes 

0dT 0dU

0dU 2lnln
initial

final

nRT
V

V
nRTPdVdWQ  

(for both gases) 

in total   2lnBA RnnS 

Reversible, isothermal, isobaric expansion 

Reversible, isothermal, isochoric “compression” 

Classical: Entropy change for changing volume 

ii VV 
'

0 iS



  2lnBA RnnS 

ii VV 2
'

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1 

2 

Reversible, isothermal, isobaric expansion 

Reversible, isothermal, isochoric “compression” 

Classical: Entropy change for changing volume 

ii VV 
'

0 iS



Irreversible, isothermal expansion, with Pext = 0 

2lnln
1

2 nR
V

V
nRS 

A

'

A 2VV 

51 

3 

0ext  dVPdW0ext P

0dU0dT dWdQ 
(perfect gas) 

(irreversible) 

0
irr
dQ

0
irr
dQ ?

rev


T

dQ
dS

Reversible alternative 

Classical: Entropy change for changing volume 

Exercise 30 



Irreversible, isothermal expansion, with Pext = 0 2lnnRS 

A

'

A 2VV 

52 

1 

2 

3 
  2lnBA RnnS 

Classical: Entropy change for changing volume 

Reversible, isothermal, isobaric expansion 

Reversible, isothermal, isochoric “compression” 

ii VV 
'

0 iS

ii VV 2
'
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Exp. ΔS ΔSsur 

 

ΔStot 

 

rev./irr. 

1 0 0 

 

0 

 

reversible 

2 (nA+nB)R ln 2 -(nA+nB)R ln 2 

 

0 

 

reversible 

3 nR ln 2 

 

0 

 

nR ln 2 irreversible 

Experiment 1: mixing → disorder increases, but 0,0  SV

Experiment 2: mixing → disorder increases, but 0,0  SV

Experiment 3: no mixing → disorder constant 0,0  SV

Classical: Entropy change for changing volume 

Besides Qrev and T also V determines the entropy S 
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Q.M.: Entropy change for changing volume 
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q is a measure for the number  

of thermally accessible states 
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Boltzmann entropy 

)(VSS 

Q.M.: Entropy change for changing volume 

Exercise 30 



 WkSWqV ln

 WkSWqT ln

WkS ln
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Perfect atomic gas: 

i

f

V

V
nRS lnPerfect atomic gas: 

W: # micro-states 
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Two ways to change Boltzmann entropy 

0d V

0d T



0d T0d V

WkS ln

(for 4 constant CV values) 
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Two ways to change Boltzmann entropy 
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Notes for the exam and studying 

• After having completed your preparation: 

      Go through all equations of both formulae sheets 

 ---- Be sure to understand the meaning of each symbol 

 ---- Be sure to understand when the formula can be used 

• At any time: 

 ---- Email me for any question: h.meekes@science.ru.nl 

Fill out the course survey 

The PC (OLC) uses the results to evaluate the course and lecturer 

 

The lecturer(s) always would like to know how to improve the course 

 

We want your input!! 

• Q&A: 

 ---- Q&A: 22/10, 10:30 in HG00.062 
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