Summary of Lecture 6
Electrolytic solutions and Electrochemistry
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Electrolytic solutions and Electrochemistry
Activity as an effective concentration

U = ,ui® +RT In a,

Molarity |. — #molsolute 1 n, 9 =@ S ([
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- #mol solutei n b.
Molality b, = _ a =y® 21 [h° = 1molikg
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|[P=P° [co —1mol/L f
Standard state © i even for

(still T dependent) ai® _ 1\and pure » | bi® — 1mol/kg jons!
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Activity coefficients solutes electrolytic solutions

M X, <> pM* +gX*

average chemical
potential per ion

G,(M X,)=p=pu, +qu.

chemical potential of the dissolved salt
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Debye-Huckel:

Mean activity coefficient

v, =) s=p+q

log y. =—z,z |AI""*

limiting law
(b, ~ mmol/kg )

lonic strength
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2

b0

A_ F3 pb® 1/2
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(sum over all ions in solution)

A = 0.509 for H,O @ 298 K 3




L ecture 7/

hermodynamics of surfaces and interfaces

Atkins (ed. 12, 11): 814C.2-C.4 + 4B.1(c) + Study Guide: P.20
Atkins (ed. 10): 816C.2-C.4 + 4.4(c) + Study Guide: P.20
Atkins (ed. 9): 8§17.8-17.10 + 4.4(c) + Study Guide: P.20

Statistical Thermodynamics
Study Guide: P.21-22

Entropy revisited
Study Guide: P.22-24




Thermodynamics of surfaces and interfaces
Na,ClO, crystals in a saturated solution

@ = 2:2:2:2: Optically left

ammm [Otating crystal
Saturated p e
solution

IOBB  Optically right
:2:?%:% ro!?altci:r{i1 gyc :;/gstal

Optical active crystals under polarizing microscope




Na,ClO, crystals in a saturated solution

Wilhelm Ostwald
(1853-1932)

Ostwald ripening

T=0 T=1day (1896)
Large crystals grow: small crystals dissolve




Na,ClO, crystals in a saturated solution

S A eV &

A

0.5 mm

\%\ o
T=0 T=1day 10 days 30 days
Equilibrium: one single crystal of single handedness!




Na,ClO, crystals in a saturated solution

N @ @ ©

\%\ o
T=0 T=1day 10 days 30 days
Equilibrium: one single crystal of single handedness!




Gibbs-Thomson effect

Interfacial (free) energy between two phases
o . Interfacial surface

dA = —SdT —PdV +dW,

I
A : Helmholtz free enerqgy

(\ - \( \ \(\ \(‘,.5. }
»:= crystal
T solution

0.5 mm
e




Gibbs-Thomson effect
Interfacial (free) enerqy between two phases

dA=-SdT —PdV +dW,| o Interfacial surface

I
A : Helmholtz free enerqgy

Gibbsfree energy Helmholtz free energy

()] O]
IS IS
01 mi
= =
Sl ol
= | =1
= = < =
Ll ) L 1
Engrgy minimum™——— L Engrgy minimun™———_ 1 27 _
| |
dG|,, =0 ; T,P dA,, =0 ; TV
O Reaction progreslsion ¢ 1 () Reaction progreslsion ¢ 1
feq é:eq
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Gibbs-Thomson effect

Interfacial (free) energy between two phases

dA = —SdT — PdV +dwW_

o . Interfacial surface

dA;y=dW_ = ydo

y . Interfacial or surface tension

y > 0| mp Surface tension y tends to reduce o

o (m?): surface

y (Jm-2): surface tension

relevant for P >1
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Pressure, p

Gibbs-Thomson effect

Interfacial (free) energy between two phases

dA = —SdT — PdV +dwW_

o . Interfacial surface

dA;y=dW_ = ydo

y . Interfacial or surface tension

relevant for P >1

Liquid
Solid

/ Vapour

Temperature, T

P=23

Temperature, T

Mole fraction of B, x,

P =23
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Gibbs-Thomson effect: Laplace equation

Equilibrium: |[dA = —-SdT +dW,” +dW = = -SdT —PdV + ydo =0

Interfacial or surface tension Y>0 tends to reduce o

Isotropic y ==p smallest surface o is spherical

y=do <0

P, =dV, >0

P,=>dV. <0

out

=) dA =-P dV, —P _dV_ +ydo=0

Equilibrium: Relation between P, , P . and y ? 1




Gibbs-Thomson effect: Laplace equation

Equilibrium: [dA. =—-P, dV. —P

out

dv_,+ydo =0

o,V for a sphere: only depend on radius

@ =-V,) TR a e
=) dA=-P 3 dr+P, —5 —dr+y dr =0
dr dr dr
P = Pout +2_7/
r

Laplace equation
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Gibbs-Thomson effect: Laplace equation

Surface tension y (Jm2 = Nm-)

(293 K, in air) y/(mNm™)

Benzene 28.88
| 2 7/ Mercury 472
| F)in — POUt + Methanol 22.6
| r Water 72.75
|| op"“‘ Laplace equation
| * More values are given in the Data section.
\ 3 . Notethat INm™'=1]m™.
| B
ELE \ “in
- 78
% :
k= r\ = T4 \
o : i water
= =z
= £
n = 70
[¥2] =
£ ' 5
o Increasing g
surface *g 66 \
tension, y £
D 62
%
58
p"""ﬁ O 20 40 60 8 10 15

RE’IE“LIS, r Temperature, 8/°C



Surface tension and capillary action

16



Surface tension and capillary action

Adhesive force between liquid and capillary, e.g. H,O/glass

capillary rise
P

capillary depression

y/(mNm™)

eeeeee 28.88
Mercur y 472
[ Methanol 22.6

Water 7275

Stronger cohesive force within the liquid, e.g. Hg/glass
17




Surface tension and capillary action

Adhesive force between liquid and capillary

|

I

—

I

I

I

N m—t
~ —

Pressure of a liguid column
with cross section A,
height h and mass density p

oy - F(O) _m(hg _ m(hgh _ m(h)gh
A A Ah V

= pgh
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Surface tension and capillary action

Adhesive force between liquid and capillary

Laplace equation _

AI:):F)in_F)outZZ_y
r

P(h) = pgh

equilibrium

P(h) = AP

P

P_2_Y/_'* ______ A

roo ot er
—+pgh
AN I

oy MLy |y
f 1
P P P

A

A

oy~ F() _mtg _ m(hgh _ m(h)gh

Ah

V

= pgh
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Surface tension and capillary action

Adhesive force between liguid and capillary

Laplace equation _ P
2y /*
AP=P, -P, == = ¢
in out r P_2_r\’ “ s A
—-”P—ﬂH)gh h
P(h) = pgh N N
N
equilibrium [P (h) = AP ——H——— "JT_[
- P P P
‘ h= 27| capillary rise
Par

Exercise 26
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Surface tension and capillary action

0. =0

8

{

W

r

QC:O r:R
H_ 2y 2y
P9r - pgR

R
Cos O, = —

6?C¢O r >R
2 2
h=2L -2 Cos 6,
PIr - pOR
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Surface tension and capillary action

6.=0
H_ 2y 2y
Par - pgR

equilibrium situations

8

{

K r Y

=2 :

Each interfacial tension
tries to reduce its

corresponding surface

Vsg = Ve T 71y COS 0.
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Surface tension and wetting

Tg 2
g [ 5l I 5g
e p {ﬂ//ﬁ///ﬁﬁé&’ i
5 5

w. . =——| specific work (J/m?)of adhesion

(y is always trying to reduce the corresponding surface)
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Surface tension and wetting

Tg e 2
{

W'IFS.I_-? [ ﬂfsl I Tﬁg
/f/////////////gfﬂ/////////// p {ﬂ//ﬁ///ﬁﬁé&’ i
k)
W 7/5|G_7/3g0_7/|go-
Wagh =—— = — :7/sg+7/lg_7/sl

O O

specific
work (J/m?)
of adhesion

(y is always trying to reduce the corresponding surface)

2

[ . 6 Y,

| T.s'..’ I —
/////M/zgﬁ/x;ggm/;w > g Vsg = Vs T 7ig COS 0,

(equilibrium)

horizontal

Force (N/m)

balance
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Surface tension and wetting

Tig g
C e
v [y 8 T,

IE I [
/////////////ﬁ/////////// ////ﬁé’/ﬁé&’//mfﬁ’/f >sg

W
cosg =—2 1
7/Ig

Work (J/m?)  [Waah = 7Vsg + 719 = Vs }

Force (N/m) |7ss =7si T 71y COS &,

2

W .
0<—2" <1<180° <6, <90° m“ﬂg partial
Vg TRy dewetting
g

W . . & artial
ath 9 5 90° <@ <0°| AN partl
- > >, Wetting
7 g L e N dos

1<




Kelvin equation
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Pressure, p

Kelvin equation and nucleation

nucleation barrier for condensation (2> @ T<T

vap

AP=P —p -2
;

Laplace equation

Surface tension will change P

revert to Gibbs free energy

—

dy, , =-S,,,dT +V, ,dP

Temperature, T

equilibrium |dug =dg,

=

(pure compound)

P*+AP

jvmpp— jvmdP

P =P (T)

@ constant T
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Pressure, p

Kelvin equation and nucleation

nucleation barrier for condensation (2> @ T<T

vap

AI:):F)in_l:)outzz_}/

—

=

2V, ]

P, = P*expL o J

Temperature, T

Kelvin equation
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Pressure, p

Kelvin equation and nucleation

nucleation barrier for condensation (2> @ T<T

vap

Temperature, T

P,=P" exp{

Kelvin equation

27Vm,|
rRT

Consider an undercooled gas:

=

P,(r)> P’

P =P (T)

->small droplets evaporate
->condensation nucleation barrier

29



Nucleation of solid phase f(s) from liquid a(l)

 revert to Gibbs free energy
» classical nucleation theory

— spherical nucleus, radius r
— driving force: Au=pu, —u,
— surface free energy: y

— molar volume of phase f: V|,

30



Nucleation of solid phase f(s) from liquid a(l)

 revert to Gibbs free enerqy

* classical nucleation theory

— spherical nucleus, radius r
— driving force: Au=u, -4,

— surface free energy: y

— molar volume of phase f: V|,

4 3

—nr
AG, =n,Ap = 3v AL
AG_ =+4rr’y

—

=

4 3
—7r
AG = 3V Ap+4rriy

m

\ ' ] |\ )

gain cost

(If Ap = py—p, <0) 31




Nucleation of solid phase f(s) from liquid a(l)

rr (if Ape = pa, — 1, <0)

AG =3 Ap+4rriy

Vm /_i\
0 |

|
1
1
1
1

. 1

O nucleation_ .
>, nucleation

(3 r o
1

\

1
0 e radius —>

AG —>




Nucleation of solid phase f(s) from liquid a(l)

rr (if Ape = pa, — 1, <0)
AG = Ap+4rriy

Vm /@\
0 |

critical radius r: / ; \
nucleation

no nucleation
- ——
dAG \ il

dr 0 r c radius —>

AG —>

nucleation barrier depends on
supersaturation (Au = Au(T )

_162Ver’ 2N,

G = .
30 T Au -low Au : no nucleation

c

Exercise 27 -high Au : easy nucleation s




Statistical Thermodynamics: Boltzmann distribution

34



Statistical Thermodynamics: History

“ Gibbs 1870
Clausius 1856 Boltzmann 1896
40" G=H-TS
efficiency dS = ——| freeeneray S=kInW
T statistical
entropy thermodynamics
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Statistical Thermodynamics: History

Ly-a Ba-a Pa-u Br-a Pf-a Hu-«
— )
| l l | |
L 1
visible
100 nm 1000 nm 10 000 nm

The discrete part of the emission spectrum of hydrogen

— Quantum Mechanics:
discrete enerqy spectrum

m) E(V) > ¢

&;is the energy of a molecule in_guantum state or qguantum level |

discrete energy levels () — ‘90 ’ gl’ 52 e

36

Source: https://en.wikipedia.org/wiki/Discrete _spectrum



Statistical Thermodynamics:Boltzmann distribution
Boltzmann distribution:

Average number of molecules
In quantum state g&;

exp{— '}
n =N KT
A £

2 eXP| — -
L KT

Boltzmann distribution
IS normalized
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Statistical Thermodynamics:Boltzmann distribution

Boltzmann distribution:

expr_ & |
n.=N L_kTJ_
D exp _ 5
j _ kT_
R
= ex _ 1 Partition function
q Z,: p_ T

Partition function:

- normalizes the distribution
- is a measure for the number of thermally accessible states

38



Statistical Thermodynamics:Boltzmann distribution

Boltzmann distribution:

n; :exp[—,Bgi] =i
: Feia

J= Z EXP [_ :ng ] Partition function
J

Chance P; of a molecule to bein a

quantum state i with energy §&;

39



Statistical Thermodynamics:Boltzmann distribution

Alternative |1 _ P Chance P; of a molecule to be in a
interpretation |\ guantum state i with energy ¢&;
Boltzmann distribution Partition function
n,  expl- B, _ [ 1
N q j KT

Example: Internal enerqy averaged over all guantum states

m) <U >= NZgiPi :%Zgi expl- pe. 1=~ {aq}

q |Ldp

Study Guide page 21
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Statistical Thermodynamics:Boltzmann distribution

e ] -
exp| ——— exp| ——
Lo kT "L kT
| N q
Two level system N |
£ =0| |g=¢|. |
)[ EO.S
choice g
Exercise 28-29
0 _,Ff/. oL g |
0 0.5 1 0 5 1041
Temperature, kT/e

Temperature, kT/e



Statistical Thermodynamics: Boltzmann entropy

1877: Boltzmann entropy

S : measure for “statistical mixedupness”

S=kinW

W is the number of micro states of a

system in equilibrium as a macro state

Ludwig Boltzmann
1844-1906

UUUUU

UUUUU

DDDDD

flv [s/m] T=100K

T=300K

W small

W large

T=800K

1000 [mis] 1200 42

Particle velocity V increases with T




Statistical Thermodynamics: Boltzmann entropy

S=kinW

S,=kInW, | + [S,=kInW,| — | W=WW,

(ideal mixtures)

m) (S, +S,=KInW, +kInW, =kInWW, =kInW =S

(only for ideal mixtures)
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Statistical vs. Classical Thermodynamics

IS entropy S a measure for disorder or chaos?

To test this we perform three “Gedanken” experiments

-  Classical thermodynamics
- Perfect gases A and B
-  Clever design of experiment

(Study Guide: p.22-24)
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Classical: Entropy change for changing volume

1

|

il

&= \echanical coupling

o u
wr H
2
w M
s H
2]
w M
b H
w H
= H
e H
L M
= H
2
w M
s H
=
h H

Semi-permeable for A 4—' I—b Semi-permeable for B (fixed position)
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Classical: Entropy change for changing volume

1

!

&= \echanical coupling

>
o>

o u
4N

2 H
w M
2N

2] H
w M
b H
"l 1
= H
e H
L M
4N

2 H
w M
s H
=

o 1

Semi-permeable for A 4—' L> Semi-permeable for B (fixed position)

—

V, =V,

—>

V, =V,

Reversible, isothermal, isochoric “compression’” B

—

dV, 5 dVg =0

dU =dQ + dwW

=)

mm) (for both gases) |[dW = —PdV =0 — )

dT =0| == |dU =0

dQ™ =dQ™ =0| = [AS=0]




Classical: Entropy change for changing volume

1

|

Reversible, isothermal, isochoric “compression”

&+

1

i i
= H
25
e H
Loar] H
2
e H
=% H
Y H
=% H
e H
o H
Tl H
25
e H
Ll H
=
- 1

a7




Classical: Entropy change for changing volume
1

L H
= u
e H
o u
Tl H
w H
= u 1
]
L u
= u
L H —
= u
= H . — .
o u
= H
]
o u
Loar] H
]
L u
= u
=
M

Reversible, isothermal, isochoric “compression” |AS —

2 1 Mechanical coupling |

A & B AL AB B A+B

Semi-pgrmealqle membranes _ _ _
Reversible, isothermal, isobaric expansion
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Classical: Entropy change for changing volume
1

L H
= H
e H
o H
Tl H
= H
2N H 1
2]
e H
b H
w H J—
= H
= H . —_— .
o H
Tl H
2
e H
Loar] H
2]
e H
b H
=
£

Reversible, isothermal, isochoric “compression” |AS —

9 ] Mechanical coupling |

A & B AL AB B A+B

Semi-permeable membranes _ _
Reversible, isothermal, isobaric expansion

dT =0 == |dU = 0| (for both gases)

final

=) dU =0 ‘Qz—dez—deVanTan =nRT In2

V initial

in total mm) |AS =(n, +ng)RIn2 49




Classical: Entropy change for changing volume
1

L H
™ H
e H
o u
Tl H
w H
= u 1
]
L u
™ H
L H —
= u
= H . — .
o u
Tl H
]
o u
Ll H
]
L u
= u
=
M

A+B V. =2V

A H B AL AB B

Reversible, isothermal, isobaric expansion |AS = (nA +Ng )R In 2

50



Classical: Entropy change for changing volume

3

A Bxi= 0
V ||

FETeideiidd

Bxi= 0

Irreversible, isothermal expansion, with P

P.=0 == |dW =-P,_dV =0

ext

dT =0 == U

0 | e

(perfect gas)

inrr -0

Exercise 30
Reversible alternative

dQ = -

) | (S =

A V, =2V
2V Al A A
=0
’_q inH’ — O
(irreversible)
dQ rev :7
T

— AS=nRIn—-4=nRIn2

V

Vl
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Classical: Entropy change for changing volume
1

L H
= u
e H
o u
= H
w H
= u 1
]
L u
= u
L H —
= u
= H . — .
o u
= H
]
o u
Loar] H
]
L u
= u
=
M

A H B AL AB B

Reversible, isothermal, isobaric expansion |AS = (nA +Ng )R In 2

3 .

A RBx=0 A N RBx=0 A VI =2V
v ¥ v A A
| ) [ | ) f\.
Irreversible, isothermal expansion, with P...=0 |AS=nRIn 2
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Classical: Entropy change for changing volume

Exp. AS ASy,,
1 0 0
2 (ny+ng)RIN2  -(ny+ng)RIn 2

3 NR In 2 0

Experiment 1: mixing — disorder increases, but

Experiment 2: mixing — disorder increases, but

Experiment 3: no mixing — disorder constant

mmm) Besides Q™ and T also V determines the entrogy S

AStOt

NR In 2

rev.firr.
reversible
reversible
irreversible
AV =0,AS =0
AV #0,AS #0
AV #0,AS #0




Q.M.: Entropy change for changing volume

. . n.
Quantum mechanics Boltzmann distribution |—-
_ N
- h2
E & = (I2 —1) >
.g \ 8mX
E 3 D box: — -
2 \ V = XYZ ‘
P \ V| [ h
.g o \KA TN J27 mkT
P _
O
% \ i: eXp[_ﬂgl]:AS exp[—ﬂe,]
-l AN N v \%
\\
——
X




ume

Q.M.: Entropy change for changing vo
Boltzmann entropy
n, exp[_lggi]
%‘ \\ N 0

S=kinW

q:

Y
A

g is a measure for the number

/ \KA of thermally accessible states

ViI=qT=WT=S=khw T

O]
L
= \\
c N ‘ S=SV)
N
X Exercise 30
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Two ways to change Boltzmann entropy

dV — O Heat

=

S=kInW | W: #micro-states

TT=qgT=WT=S=kihw T

Perfect atomic gas:

-
AS :EnR In ——
2 T.

dT

Wo rkT

Vi=gld=Wl=S=khw

Perfect atomic gas:

I AT

Vf
AS =nRIh —
V.
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Two ways to change Boltzmann entropy

S=kInW

4

15

I

T
AS =C, In— |~

T

3 e 3

AS/nR

N
AS/nR
N

10 20 30
/T

f

(for 4 constant C,, values)

7]
f
AS =nR InV—i
V
10 20 30
7%
dT =0
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Appendix C Appendix D

Formulae first year course Thermodynamics Formulae Thermodynamics 2
PV = nRT = NkT (ﬂ) _ (E)
U= EnRT — Ei\"kT or PW' n; opP T.W' n;
2 2 ox
dU=dQ +dW. so AU= /dQ + /dW =Q+W Xi = (aﬂ.t-);,‘mm
dQly = CvdT, where Cy = (Y > _midp =0
aT v i
P =xz,P
dQ|p = CpdT, where Cp = (@) P
T/ p Py =y;P
gs = 49™ _ dQ Pp =xpKp
r T o Iu
dStor = dS + dSeurr > 0 it R B ) = AV
o T B = (BP)T (6P)T N
S=kInW )
s Ha
dU = —PdV + TdS + idn; (—) - (—) = —AysS
3o ), (3), >
H=U+PV P— P*exp (VmAP)
dH =VdP + TdS + 3 " puydny BT
: £ o At.rss o AtrsH
A=U-TS§ AT~ AV TARV
dA= PaV - SAT + Y pidn dinP Ay H
- aT RT?
G=H-TS RT*? AmsH[ 1 1
AT = (m) TR Inrp = R {Tfus — T}

dG = VAP — ST + )~ pusdn
i Iu,;:u?+fﬂ‘lna-i:(1?+RTlnri+}?Tln‘y,:

e 5 : _
Arcz(a_)],T:ArG”rRﬂnQ with Q=]]d ,ug:=,u?+RTlna-,-=u§9+RTln§—%+RTln”ﬁ
F=C-P+2
A,GO=—RTIK with K= (Ha;’f) nol = sl

egq
(AP A1)

AG=—vFE, so E=E®_ EFan 2= (417)

I _ v _ _ . log e = — |2z |AVT

. . ; . . 1 b;

AW = —Pe dV +dW’ and dW),, = (dG)p, and dW'=Edq 1=3 Z 2k
p (60) (&4) (BH) (60’) !

;= P —— = = = 1

! n; PTomy, i /v rn e I P.Smj; On; ViSinge _ F* ( pb® ) :

T 4nN4In10 \ 22 RT3
Gpr =) i A
i

2
Py = out“r?’}. P:PQh

Z nidp; =0
i

] e
Aldealg — _nR(zqlney +rplnag) L b ol
N q

Wad = Ysg + Yig — Vsl Ysg = Ysi + Yig COS (S 58

with q:Zcxp;—;f and <X>:N<z>:;\"2:r,%
i i



Notes for the exam and studying

« Q&A:
---- Q&A: 22/10, 10:30 in HG00.062

« After having completed your preparation:
Go through all equations of both formulae sheets

---- Be sure to understand the meaning of each symbol

---- Be sure to understand when the formula can be used

« At any time:
---- Email me for any question: h.meekes@science.ru.nl

Fill out the course survey

The PC (OLC) uses the results to evaluate the course and lecturer
The lecturer(s) always would like to know how to improve the course

We want your input!!

59



60



