Additional tutorial A, Thermodynamics 2, 2023/2024

Exercise A1

The densities of aqueous solutions of $CuSO_4$ at 20 °C have been determined experimentally. The findings are listed below (weight % means the amount of gram $CuSO_4$ per 100 g solution)

$\operatorname{conc}(\operatorname{weight}\%)$	$\rho \; (\mathrm{g cm}^{-3})$
5	1.051
10	1.107
15	1.167
20	1.230

The molar mass of CuSO₄ is m = 159.6 g/mol and that of water is m = 18 g/mol.

- a) Determine the total volume of the four solutions with 1000 g water.
- b) Determine the amount of mole n_{CuSO_4} for the four solutions with 1000 g water.
- c) Plot the volume (in cm^3) as a function of n_{CuSO_4} .
- d) A decent fit for this graph is $V = a + bn + cn^{2.5}$ with $a = 1000.5882 \text{ cm}^3$, $b = 2.159 \text{ cm}^3/\text{mol}$ and $c = 4.0002 \text{ cm}^3/\text{mol}^{2.5}$. Determine the partial molar volume of the CuSO₄ in the four solutions.
- e) Determine the partial molar volume of the water in the four solutions.

Exercise A2

The vapour pressures of toluene and benzene at 27 °C are 100 mm Hg en 60 mm Hg respectively. Benzene and toluene form an ideal mixture; Raoult's law can therefore be used for any mixture of the two.

- a) Draw the P, x-diagram at 27 °C.
- b) At 27 °C 4 moles of benzene and 6 moles of toluene are mixed. Calculate the ΔH , ΔG and ΔS of this mixing process.
- c) Calculate the composition of the vapour which is in equilibrium with the liquid mixture.

Exercise A3

The equilibrium vapour pressure of acetone and chloroform at 27 °C are respectively 300 mm Hg and 200 mm Hg. Chloroform and acetone form a non-ideal mixture, which near the edges of the phase diagram follow Raoult's law for the majority component, while the minority component follows Henry's law in those regions.

The Henry-constants at 27 °C are 170 mm Hg en 166 mm Hg for acetone and chloroform respectively.

- a) Sketch the P, x-diagram for mixtures of acetone en chloroform at 27 °C.
- b) At 27 °C acetone and chloroform are mixed, such that 99 mol acetone and 1 mol chloroform are present in the mixture. Calculate $\Delta_{mix}G$.
- c) Is it possible to calculate $\Delta_{mix}S$ and $\Delta_{mix}H$ as well with these data?
- d) Determine the composition of the vapour above the mixture of part b) in terms of the mole fractions y_A and y_B .

Exercise A4

We consider non-ideal solutions. For non-ideal solutions the deviation from ideal behaviour is expressed in terms of the so-called excess-value of a quantity X:

 $X^{E(xcess)} = \Delta_{mix} X - \Delta_{mix} X^{ideal}$

a) Determine for a binary mixture $X^{E(xcess)}$ as far as possible for X = G, S and H.

Consider a binary mixture for which $G^E = gRTx(1-x)$, where g is a constant.

- b) What are the units of g?
- c) Determine the chemical potential of the components using the definition of μ_i .
- d) Determine the activities and activity coefficients of the components.
- e) Sketch the chemical potential for both components as a function of x_1 .
- f) Determine the entropy and enthalpy of mixing.
- g) Discuss, using the result of part f), in what respect the mixture behaves as non-ideal.

Exercise A5

Calculate the freezing point of 250 cm³ of water, in which 7.5 g sucrose is dissolved at 25 °C . Some data: $T^*_{\rm H_2O} = 273.15$ K, $\Delta_{fus}H_{\rm H_2O} = 6.008$ kJ/mol, $M_{\rm H_2O} = 18.015$ g/mol, $\rho_{\rm H_2O} = 0.997$ g/cm⁻³ en $M_{\rm sucrose} = 342.30$ g/mol.

Exercise A6

Calculate how many grams of the following substances you need to add to lower the melting point of water by 1 °C. Use the following values:

 $T^*_{\rm H_2O} = 273.15 \text{ K}, \ \Delta_{fus} H_{\rm H_2O} = 6.008 \text{ kJ/mol}, \ M_{\rm H_2O} = 18.015 \text{ g/mol en } \rho_{\rm H_2O} = 0.997 \text{ g} \cdot \text{cm}^{-3}.$

- a) DMSO ((CH_3)₂SO),
- b) sucrose $(C_{12}H_{22}O_{11})$,
- c) 1 M hydrochloric acid.