
Answers Additional Tutorial A, Thermodynamics 2, 2023/2024

Exercise A1

a) Since the method is the same for all four cases, we only work it out for the first one (the values of
the rest can be found in the table below).
The solution is 5 weight percent, so we have 5 g of CuSO4 and 95 g water per 100 g.
We can use ρ = M

V to determine the volume of the mixture. Per 1000 g water we have 5
951000 =

52.6 g CuSO4, so M = 1052.6 g
We therefore have a volume of V = 1052.6

1.051 = 1001.55 cm3 per 1000 g water.

b) We can determine the amount of CuSO4 using nCuSO4
= 52.63

159.6 = 0.3298.

c) For the four solutions we find

nCuSO4 V (cm3)

0.3298 1001.55
0.6962 1003.71
1.1057 1008.12
1.5664 1016.26
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d) The partial molar volume of CuSO4 still is a function of nCuSO4 and is defined by VCuSO4 =(
∂V

∂nCuSO4

)
nwater

, so VCuSO4 can be determined by differentiating V with respect to n: ∂V
∂n = b +

2.5cn1.5. The results can be found in the following table

nCuSO4
VCuSO4

(cm3/mol)

0.3298 4.05
0.6962 7.97
1.1057 13.8
1.5664 21.8

e) Vwater =
(

∂V
∂nwater

)
nCuSO4

.

We could calculate Vwater in a similar way (certain amount of CuSO4 (e.g. 100 g), fit the graph of
V (nwater), differentiate with respect to nwater).
It is however easier to use V = Vwaternwater + VCuSO4

nCuSO4
. We determine the amount of mole

nwater with nwater = Mwater

mwater
, so nwater = 1000

18 = 55.56 for all four solutions.
This results are shown in the following table

V (cm3) VCuSO4
(cm3/mol) nCuSO4

nwater Vwater (cm3/mol)

1001.55 4.05 0.3298 55.56 18.00
1003.71 7.97 0.6962 55.56 17.97
1008.12 13.8 1.1057 55.56 17.87
1016.26 21.8 1.5664 55.56 17.68

Vwater should be 18 (cm3/mol) for a very dilute solution. The first value in the table should
therefore be smaller than 18 (cm3/mol).
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Exercise A2

Since toluene and benzene form an ideal solution, Raoult’s law applies to the entire plot: Pt = xtP
∗
t en

Pb = xbP
∗
b , in which

Pi is the partial vapour pressure of component i,
xi = ni

nt+nb
= ni

n the molar fraction of component i in the mixture and
P ∗i the vapour pressure i in case of a pure compound.

a) P ∗t = 100 mm Hg and P ∗b = 60 mm Hg at 27 ◦C, so the P, x-diagram becomes (P tot = Pt + Pb):
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b) We derived the Gibbs free energy of an ideal binary mixture to be

∆mixG = ntRT lnxt + nbRT lnxb = nRT (xt lnxt + xb lnxb).

At 27 ◦C we have xt = 6
4+6 = 0.6 and xb = 4

4+6 = 0.4

∆mixG = 6 · 8.3 · 300 ln 0.6 + 4 · 8.3 · 300 ln 0.4 = −17 kJ.

The entropy of mixing is

∆mixS = −
(
∂∆mixG

∂T

)
P,nt,nb

= −nR(xt lnxt + xb lnxb) = −∆mixG

T
= −−17 kJ

300 K
= 56 J/K.

The enthalpy of mixing can be found using ∆G = ∆H − T∆S at constant T , and therefore

∆mixH = ∆mixG+ T∆mixS = −17 kJ + 17 kJ = 0 J.

This is a direct consequence of the fact that we consider the mixture of benzene and toluene to be
ideal. The enthalpy of mixing will generally not be zero for a real mixture.

c) According to Raoult’s law Pt = xtP
∗
t = 0.6 · 100 = 60 mm Hg and Pb = xbP

∗
b = 0.4 · 60 = 24 mm

Hg, so the mole fractions yi in the vapour are yt = 60
60+24 = 60

84 and yb = 24
84 .

Exercise A3

a) In figure 1 R indicates Raoult’s law and H indicates Henry’s law; subscripts are a(cetone) and
c(hloroform).

b) For a mixture of 99 mol acetone and 1 mol chloroform the majority comopnent is acetone.
For acetone therefore Raoult’s law ia applicable and for chloroform Henry’s law, so
Pa = xaP

∗
a = 99

99+1300 = 297 mm Hg and

Pc = xcKc = 1
99+1166 = 1.66 mm Hg.
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Figure 1:

∆G is ∆mixG = Gf −Gi = G−Gi.

Initially: Gi = naµ
∗
a + ncµ

∗
c , where µ∗a,c = µ�

a,c +RT ln
P∗a,c

P�
a,c

.

Once mixed we find G = naµa + ncµc, where µa,c = µ�
a,c +RT ln

Pa,c

P�
a,c

, so

∆mixG = naRT ln Pa

P∗a
+ ncRT ln Pc

P∗c
, and therefore

∆mixG = 99 · 8.31 · 300 ln 297
300 + 1 · 8.31 · 300 ln 1.66

200 = (−2.48− 11.9) · 103 = −14.4 kJ.

c) ∆mixS = −
(
∂∆mixG

∂T

)
P,na,nc

= −∆mixG
T = 14.4·103

300 = 48 J/K.

∆mixH = ∆mixG+ T∆mixS = −14.4 · 103 + 300 · 48 = 0 J.
Note that despite the apparently zero ∆mixH for the Henry-law, in reality this value is nonzero,
because Henry’s law is simply a linear approximation (Pi ≈ xiKi) of the vapour pressure for small
mole fractions of the minority component i. With this approximation the behaviour seems to be
Raoult-like.

d) See part b):
Pa = xaP

∗
a = 297 mm Hg and

Pc = xcKc = 1.66 mm Hg.
The vapour composition is therefore given by ya = 297

297+1.66 = 0.994 and yc = 1− 0.994 = 0.006.

Exercise A4

a) XE = ∆mixX −∆mixX
ideal. For an ideal solution Raoult’s law gives

∆mixG
ideal = nRT (x1 lnx1 + x2 lnx2), so GE = ∆mixG− nRT (x1 lnx1 + x2 lnx2).

∆mixS
ideal = −nR(x1 lnx1 + x2 lnx2), so SE = ∆mixS + nR(x1 lnx1 + x2 lnx2).

∆mixH
ideal = 0, and HE = ∆mixH.

b) In the expression for GE we do not see a symbol for the number of moles n, altough we are used
to interpret GE as an extensive (excess) Gibbs free energy, for which the units are [GE ] = J.
Furthermore [R] = J/molK, [T ] = K and x is a fraction without units, such that [g] = mol.
The extensive excess-Gibbs free energy therefore is GE = ng′RTx(1−x), where g′ = g/n is without
units.
The function is symmetrical in x = 0.5, so we can express x either as x1 or x2; we choose x1.

c) µ1 =
(

∂G
∂n1

)
P,T,n2

and analogously for µ2. We are working at constant pressure and temperature

and with that knowledge we can suppress the subscripts P, T resulting in µ1 =
(

∂G
∂n1

)
n2

.
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GE = ∆mixG−∆mixG
ideal and ∆mixG = Gf(inal) −Gi(nitial).

For an extensive GE we write nGE according to part b), so

µ1 =
(

∂G
∂n1

)
n2

=

(
∂Gideal

f

∂n1

)
n2

+
(

∂GE

∂n1

)
n2

, or

µi = µideal
i + µE

i .
For an ideal solution Raoult’s law holds (P1 = x1P

∗
1 ), such that(

∂Gideal
f

∂n1

)
n2

= µideal
1 = µ∗1 +RT ln P1

P∗1
= µ∗1 +RT lnx1.

For the excess-term we find (use n = n1 + n2 and x1 = n1/(n1 + n2))

µE
1 =

(
∂GE

∂n1

)
n2

=
(

∂ng′RTx1(1−x1)
∂n1

)
n2

=
(

∂n
∂n1

)
n2

g′RTx1(1 − x1) + ng′RT
(

∂x1(1−x1)
∂n1

)
n2

=

g′RTx1(1− x1) + ng′RT
(

∂x1(1−x1)
∂x1

)
n2

(
∂x1

∂n1

)
n2

= g′RTx1(1− x1) + ng′RT (1− 2x1)x2

n = g′RTx2
2.

For µ1 we obtain
µ1 = µ∗1 +RT lnx1 + g′RTx2

2.
For µ2 we find an analogous expression. Because GE is symmetrical in x1 and x2 (GE = g′RT (1−
x2)x2 = g′RTx2(1− x2)) and the same holds for n = n1 + n2, we find
µ2 = µ∗2 +RT lnx2 + g′RTx2

1.

d) The activity ai of component i in the mixture is defined by µi = µ∗1 + RT ln ai, while the activity
coefficient γi (on the mole fraction scale) of component i is defined by ai = γixi.
Using the result of the former part we find a1 = x1 exp

(
g′x2

2

)
, and so γ1 = exp

(
g′x2

2

)
, while

a2 = x2 exp
(
g′x2

1

)
, and therefore γ2 = exp

(
g′x2

1

)
.

e) µ1 en µ2 are easily plotted as function of x1 (or x2), using x1 = 1 − x2. If we choose g = 0.01n,
µ∗ = −1 kJ/mol for both components and T = 273 K, the we find the result of Figure 2, in which
the lower three curves represent the ideal solution case (g = 0). In the figure µ1, µ2 and x1µ1 +x2µ2

are plotted. For the same situation but with µ∗1 = −1 kJ/mol and µ∗2 = −2 kJ/mol we find the

Figure 2: µ1 and µ2 as a function of x1, for µ∗ = −1 kJ/mol for both components and T = 273 K;
g = 0.01n for the upper three curves and g = 0 for the lower curves.

result in figuur 3.

f) Compare the result of exercise 17d. ∆mixG = ∆mixH − T∆mixS. If g is independent of T then we
interpret GE = gRTx1x2 as an excess entropy, such that ∆mixS = −nR(x1 lnx1 +x2 lnx2 +g′x1x2)
and ∆mixH = 0.
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Figure 3: Same plot for µ∗1 = −1 kJ/mol and µ∗2 = −2 kJ/mol.

g) ∆mixH = 0 suggests that the solution behaves as ideal. This is however not the case because
SE = −gRx(1 − x) 6= 0 and therefore we are dealing with an athermal mixture (cf. once more
exercise 17d).

Exercise A5

We calculate the freezing point using the data T ∗H2O = 273.15 K; ∆fusHH2O = 6.008 kJ/mol; Msucrose =
342.30 g/mol; MH2O = 18.015 g/mol and ρH2O = 0.997 g/cm−3. M and ρ are specified at 298 K and
293 K, respectively. The error due to the temperature difference we can neglect, in particular because
the expression we use for the freezing point depression already has quite some approximations in its
derivation.

∆T = KxB , where K =
RT ∗2

∆fusH
so ∆T =

8.314 · 273.152

6.008 · 103

7.5
342.30

7.5
342.30 + 0.997·250

18.015

= 0.161 K.

Exercise A6

We can calculate the freezing point depression using ∆T = KxB in which K = RT∗2

∆fusH
. We use the

values T ∗H2O = 273.15 K; ∆fusHH2O = 6.008 kJ/mol; MH2O = 18.015 g/mol and ρH2O = 0.997 g/cm−3,

resulting in K = 8.314·273.152

6.008·103 = 103.2 K. For a melting point depression of ∆T = 1 ◦C we need a

mole fraction of solute of xB = ∆T
K = 1

103.2 = 9.7 · 10−3. xB = nB

nA+nB
≈ nB

nA
. The necessary amount

of grams is therefore mB = nBMB ≈ xBnAMB = xB
mA

MA
MB . So for 1 L ≈ 103 g water we need

mB ≈ 9.7 · 10−3 103

18.015MB = 0.54MB (g).

a) MDMSO = 78.13 g/mol, so the necessary amount is mDMSO ≈ 42 g.

b) Msucrose = 342.30 g/mol, so the necessary amount is msucrose ≈ 184 g. This seems a lot, but the
solubility is 2115 g/L at 20 ◦C, so it will work just fine.

c) In this case we have two complications. First of all, we increase the amount of water by adding
the the hydrochloric acid (hopefully negligible for an estimate). Secondly, we have a factor 1/2 in
xB because the strong acid fully dissociates into two ions. To start of we neglect the increase of
the amount of water: MHCl = 36.5 g/mol, so mHCl ≈ 1

2 · 0.54 · 36.5 = 9.8 g, which corresponds

5



to about 0.27 L hydrochloric acid. That is not quite negligible compared to 1 L and therefore an
underestimation.
We repeat the calculation without the assumption. Each mol ions corresponds to 0.5 mol HCl
and therefore 0.5 L added hydrochloric acid, which is about 28 mol water. So we have to replace

xB = nB

nA+nB
by xB = nB

nA+28nB+nB
. Using ∆T = KxB we find nB = nA

K
∆T −29

=
103

18.015

103.2−29 = 0.75 mol,

so 0.37 L hydrochloric acid (about 370 g).
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