Answers Additional Tutorial A, Thermodynamics 2, 2023/2024

Exercise A1

a) Since the method is the same for all four cases, we only work it out for the first one (the values of the rest can be found in the table below).
The solution is 5 weight percent, so we have 5 g of CuSO_{4} and 95 g water per 100 g .
We can use $\rho=\frac{M}{V}$ to determine the volume of the mixture. Per 1000 g water we have $\frac{5}{95} 1000=$ $52.6 \mathrm{~g} \mathrm{CuSO}_{4}$, so $M=1052.6 \mathrm{~g}$
We therefore have a volume of $V=\frac{1052.6}{1.051}=1001.55 \mathrm{~cm}^{3}$ per 1000 g water.
b) We can determine the amount of CuSO_{4} using $n_{\mathrm{CuSO}_{4}}=\frac{52.63}{159.6}=0.3298$.
c) For the four solutions we find

$n_{\mathrm{CuSO}_{4}}$	$V\left(\mathrm{~cm}^{3}\right)$
0.3298	1001.55
0.6962	1003.71
1.1057	1008.12
1.5664	1016.26

d) The partial molar volume of CuSO_{4} still is a function of $n_{\mathrm{CuSO}_{4}}$ and is defined by $V_{\mathrm{CuSO}_{4}}=$ $\left(\frac{\partial V}{\partial n_{\mathrm{CuSO}_{4}}}\right)_{n_{\text {water }}}$, so $V_{\mathrm{CuSO}_{4}}$ can be determined by differentiating V with respect to $n: \frac{\partial V}{\partial n}=b+$ $2.5 \mathrm{cn}^{1.5}$. The results can be found in the following table

$n_{\mathrm{CuSO}_{4}}$	$V_{\mathrm{CuSO}_{4}}\left(\mathrm{~cm}^{3} / \mathrm{mol}\right)$
0.3298	4.05
0.6962	7.97
1.1057	13.8
1.5664	21.8

e) $V_{\text {water }}=\left(\frac{\partial V}{\partial n_{\text {water }}}\right)_{n_{\mathrm{CuSO}_{4}}}$.

We could calculate $V_{\text {water }}$ in a similar way (certain amount of CuSO_{4} (e.g. 100 g), fit the graph of $V\left(n_{\text {water }}\right)$, differentiate with respect to $\left.n_{\text {water }}\right)$.
It is however easier to use $V=V_{\text {water }} n_{\text {water }}+V_{\mathrm{CuSO}_{4}} n_{\mathrm{CuSO}_{4}}$. We determine the amount of mole $n_{\text {water }}$ with $n_{\text {water }}=\frac{M_{\text {water }}}{m_{\text {water }}}$, so $n_{\text {water }}=\frac{1000}{18}=55.56$ for all four solutions.
This results are shown in the following table

$V\left(\mathrm{~cm}^{3}\right)$	$V_{\mathrm{CuSO}_{4}}\left(\mathrm{~cm}^{3} / \mathrm{mol}\right)$	$n_{\mathrm{CuSO}_{4}}$	$n_{\text {water }}$	$V_{\text {water }}\left(\mathrm{cm}^{3} / \mathrm{mol}\right)$
1001.55	4.05	0.3298	55.56	18.00
1003.71	7.97	0.6962	55.56	17.97
1008.12	13.8	1.1057	55.56	17.87
1016.26	21.8	1.5664	55.56	17.68

$V_{\text {water }}$ should be $18\left(\mathrm{~cm}^{3} / \mathrm{mol}\right)$ for a very dilute solution. The first value in the table should therefore be smaller than $18\left(\mathrm{~cm}^{3} / \mathrm{mol}\right)$.

Exercise A2

Since toluene and benzene form an ideal solution, Raoult's law applies to the entire plot: $P_{t}=x_{t} P_{t}^{*}$ en $P_{b}=x_{b} P_{b}^{*}$, in which
P_{i} is the partial vapour pressure of component i,
$x_{i}=\frac{n_{i}}{n_{t}+n_{b}}=\frac{n_{i}}{n}$ the molar fraction of component i in the mixture and
P_{i}^{*} the vapour pressure i in case of a pure compound.
a) $P_{t}^{*}=100 \mathrm{~mm} \mathrm{Hg}$ and $P_{b}^{*}=60 \mathrm{~mm} \mathrm{Hg}$ at $27^{\circ} \mathrm{C}$, so the P, x-diagram becomes $\left(P^{\text {tot }}=P_{t}+P_{b}\right)$:

b) We derived the Gibbs free energy of an ideal binary mixture to be

$$
\Delta_{m i x} G=n_{t} R T \ln x_{t}+n_{b} R T \ln x_{b}=n R T\left(x_{t} \ln x_{t}+x_{b} \ln x_{b}\right)
$$

At $27^{\circ} \mathrm{C}$ we have $x_{t}=\frac{6}{4+6}=0.6$ and $x_{b}=\frac{4}{4+6}=0.4$

$$
\Delta_{m i x} G=6 \cdot 8.3 \cdot 300 \ln 0.6+4 \cdot 8.3 \cdot 300 \ln 0.4=-17 \mathrm{~kJ}
$$

The entropy of mixing is

$$
\Delta_{m i x} S=-\left(\frac{\partial \Delta_{m i x} G}{\partial T}\right)_{P, n_{t}, n_{b}}=-n R\left(x_{t} \ln x_{t}+x_{b} \ln x_{b}\right)=-\frac{\Delta_{m i x} G}{T}=-\frac{-17 \mathrm{~kJ}}{300 \mathrm{~K}}=56 \mathrm{~J} / \mathrm{K}
$$

The enthalpy of mixing can be found using $\Delta G=\Delta H-T \Delta S$ at constant T, and therefore

$$
\Delta_{m i x} H=\Delta_{m i x} G+T \Delta_{m i x} S=-17 \mathrm{~kJ}+17 \mathrm{~kJ}=0 \mathrm{~J} .
$$

This is a direct consequence of the fact that we consider the mixture of benzene and toluene to be ideal. The enthalpy of mixing will generally not be zero for a real mixture.
c) According to Raoult's law $P_{t}=x_{t} P_{t}^{*}=0.6 \cdot 100=60 \mathrm{~mm} \mathrm{Hg}$ and $P_{b}=x_{b} P_{b}^{*}=0.4 \cdot 60=24 \mathrm{~mm}$ Hg , so the mole fractions y_{i} in the vapour are $y_{t}=\frac{60}{60+24}=\frac{60}{84}$ and $y_{b}=\frac{24}{84}$.

Exercise A3

a) In figure 1 R indicates Raoult's law and H indicates Henry's law; subscripts are a(cetone) and c (hloroform).
b) For a mixture of 99 mol acetone and 1 mol chloroform the majority comopnent is acetone.

For acetone therefore Raoult's law ia applicable and for chloroform Henry's law, so $P_{a}=x_{a} P_{a}^{*}=\frac{99}{99+1} 300=297 \mathrm{~mm} \mathrm{Hg}$ and $P_{c}=x_{c} K_{c}=\frac{1}{99+1} 166=1.66 \mathrm{~mm} \mathrm{Hg}$.

Figure 1:
ΔG is $\Delta_{m i x} G=G_{f}-G_{i}=G-G_{i}$.
Initially: $G_{i}=n_{a} \mu_{a}^{*}+n_{c} \mu_{c}^{*}$, where $\mu_{a, c}^{*}=\mu_{a, c}^{\ominus}+R T \ln \frac{P_{a, c}^{*}}{P_{a, c}^{\Theta}}$.
Once mixed we find $G=n_{a} \mu_{a}+n_{c} \mu_{c}$, where $\mu_{a, c}=\mu_{a, c}^{\ominus}+R T \ln \frac{P_{a, c}}{P_{a, c}^{\Theta}}$, so
$\Delta_{m i x} G=n_{a} R T \ln \frac{P_{a}}{P_{a}^{*}}+n_{c} R T \ln \frac{P_{c}}{P_{c}^{*}}$, and therefore
$\Delta_{m i x} G=99 \cdot 8.31 \cdot 300 \ln \frac{297}{300}+1 \cdot 8.31 \cdot 300 \ln \frac{1.66}{200}=(-2.48-11.9) \cdot 10^{3}=-14.4 \mathrm{~kJ}$.
c) $\Delta_{m i x} S=-\left(\frac{\partial \Delta_{m i x} G}{\partial T}\right)_{P, n_{a}, n_{c}}=-\frac{\Delta_{m i x} G}{T}=\frac{14.4 \cdot 10^{3}}{300}=48 \mathrm{~J} / \mathrm{K}$.
$\Delta_{m i x} H=\Delta_{m i x} G+T \Delta_{m i x} S=-14.4 \cdot 10^{3}+300 \cdot 48=0 \mathrm{~J}$.
Note that despite the apparently zero $\Delta_{m i x} H$ for the Henry-law, in reality this value is nonzero, because Henry's law is simply a linear approximation $\left(P_{i} \approx x_{i} K_{i}\right)$ of the vapour pressure for small mole fractions of the minority component i. With this approximation the behaviour seems to be Raoult-like.
d) See part b):
$P_{a}=x_{a} P_{a}^{*}=297 \mathrm{~mm} \mathrm{Hg}$ and
$P_{c}=x_{c} K_{c}=1.66 \mathrm{~mm} \mathrm{Hg}$.
The vapour composition is therefore given by $y_{a}=\frac{297}{297+1.66}=0.994$ and $y_{c}=1-0.994=0.006$.

Exercise A4

a) $X^{E}=\Delta_{m i x} X-\Delta_{m i x} X^{\text {ideal }}$. For an ideal solution Raoult's law gives
$\Delta_{m i x} G^{i d e a l}=n R T\left(x_{1} \ln x_{1}+x_{2} \ln x_{2}\right)$, so $G^{E}=\Delta_{m i x} G-n R T\left(x_{1} \ln x_{1}+x_{2} \ln x_{2}\right)$.
$\Delta_{m i x} S^{\text {ideal }}=-n R\left(x_{1} \ln x_{1}+x_{2} \ln x_{2}\right)$, so $S^{E}=\Delta_{m i x} S+n R\left(x_{1} \ln x_{1}+x_{2} \ln x_{2}\right)$.
$\Delta_{m i x} H^{i d e a l}=0$, and $H^{E}=\Delta_{m i x} H$.
b) In the expression for G^{E} we do not see a symbol for the number of moles n, altough we are used to interpret G^{E} as an extensive (excess) Gibbs free energy, for which the units are $\left[G^{E}\right]=\mathrm{J}$. Furthermore $[R]=\mathrm{J} / \mathrm{molK},[T]=\mathrm{K}$ and x is a fraction without units, such that $[g]=\mathrm{mol}$.
The extensive excess-Gibbs free energy therefore is $G^{E}=n g^{\prime} R T x(1-x)$, where $g^{\prime}=g / n$ is without units.
The function is symmetrical in $x=0.5$, so we can express x either as x_{1} or x_{2}; we choose x_{1}.
c) $\mu_{1}=\left(\frac{\partial G}{\partial n_{1}}\right)_{P, T, n_{2}}$ and analogously for μ_{2}. We are working at constant pressure and temperature and with that knowledge we can suppress the subscripts P, T resulting in $\mu_{1}=\left(\frac{\partial G}{\partial n_{1}}\right)_{n_{2}}$.
$G^{E}=\Delta_{m i x} G-\Delta_{m i x} G^{i d e a l}$ and $\Delta_{m i x} G=G_{f(\text { inal })}-G_{i(n i t i a l)}$.
For an extensive G^{E} we write $n G^{E}$ according to part b), so
$\mu_{1}=\left(\frac{\partial G}{\partial n_{1}}\right)_{n_{2}}=\left(\frac{\partial G_{f}^{i d e a l}}{\partial n_{1}}\right)_{n_{2}}+\left(\frac{\partial G^{E}}{\partial n_{1}}\right)_{n_{2}}$, or
$\mu_{i}=\mu_{i}^{\text {ideal }}+\mu_{i}^{E}$.
For an ideal solution Raoult's law holds $\left(P_{1}=x_{1} P_{1}^{*}\right)$, such that
$\left(\frac{\partial G_{f}^{i d e a l}}{\partial n_{1}}\right)_{n_{2}}=\mu_{1}^{\text {ideal }}=\mu_{1}^{*}+R T \ln \frac{P_{1}}{P_{1}^{*}}=\mu_{1}^{*}+R T \ln x_{1}$.
For the excess-term we find (use $n=n_{1}+n_{2}$ and $x_{1}=n_{1} /\left(n_{1}+n_{2}\right)$)
$\mu_{1}^{E}=\left(\frac{\partial G^{E}}{\partial n_{1}}\right)_{n_{2}}=\left(\frac{\partial n g^{\prime} R T x_{1}\left(1-x_{1}\right)}{\partial n_{1}}\right)_{n_{2}}=\left(\frac{\partial n}{\partial n_{1}}\right)_{n_{2}} g^{\prime} R T x_{1}\left(1-x_{1}\right)+n g^{\prime} R T\left(\frac{\partial x_{1}\left(1-x_{1}\right)}{\partial n_{1}}\right)_{n_{2}}=$
$g^{\prime} R T x_{1}\left(1-x_{1}\right)+n g^{\prime} R T\left(\frac{\partial x_{1}\left(1-x_{1}\right)}{\partial x_{1}}\right)_{n_{2}}\left(\frac{\partial x_{1}}{\partial n_{1}}\right)_{n_{2}}=g^{\prime} R T x_{1}\left(1-x_{1}\right)+n g^{\prime} R T\left(1-2 x_{1}\right) \frac{x_{2}}{n}=g^{\prime} R T x_{2}^{2}$.
For μ_{1} we obtain
$\mu_{1}=\mu_{1}^{*}+R T \ln x_{1}+g^{\prime} R T x_{2}^{2}$.
For μ_{2} we find an analogous expression. Because G^{E} is symmetrical in x_{1} and $x_{2}\left(G^{E}=g^{\prime} R T(1-\right.$ $\left.\left.x_{2}\right) x_{2}=g^{\prime} R T x_{2}\left(1-x_{2}\right)\right)$ and the same holds for $n=n_{1}+n_{2}$, we find
$\mu_{2}=\mu_{2}^{*}+R T \ln x_{2}+g^{\prime} R T x_{1}^{2}$.
d) The activity a_{i} of component i in the mixture is defined by $\mu_{i}=\mu_{1}^{*}+R T \ln a_{i}$, while the activity coefficient γ_{i} (on the mole fraction scale) of component i is defined by $a_{i}=\gamma_{i} x_{i}$.
Using the result of the former part we find $a_{1}=x_{1} \exp \left(g^{\prime} x_{2}^{2}\right)$, and so $\gamma_{1}=\exp \left(g^{\prime} x_{2}^{2}\right)$, while $a_{2}=x_{2} \exp \left(g^{\prime} x_{1}^{2}\right)$, and therefore $\gamma_{2}=\exp \left(g^{\prime} x_{1}^{2}\right)$.
e) μ_{1} en μ_{2} are easily plotted as function of x_{1} (or x_{2}), using $x_{1}=1-x_{2}$. If we choose $g=0.01 n$, $\mu^{*}=-1 \mathrm{~kJ} / \mathrm{mol}$ for both components and $T=273 \mathrm{~K}$, the we find the result of Figure 2, in which the lower three curves represent the ideal solution case $(g=0)$. In the figure μ_{1}, μ_{2} and $x_{1} \mu_{1}+x_{2} \mu_{2}$ are plotted. For the same situation but with $\mu_{1}^{*}=-1 \mathrm{~kJ} / \mathrm{mol}$ and $\mu_{2}^{*}=-2 \mathrm{~kJ} / \mathrm{mol}$ we find the

Figure 2: μ_{1} and μ_{2} as a function of x_{1}, for $\mu^{*}=-1 \mathrm{~kJ} / \mathrm{mol}$ for both components and $T=273 \mathrm{~K}$; $g=0.01 n$ for the upper three curves and $g=0$ for the lower curves.
result in figuur 3.
f) Compare the result of exercise 17d. $\Delta_{m i x} G=\Delta_{m i x} H-T \Delta_{m i x} S$. If g is independent of T then we interpret $G^{E}=g R T x_{1} x_{2}$ as an excess entropy, such that $\Delta_{m i x} S=-n R\left(x_{1} \ln x_{1}+x_{2} \ln x_{2}+g^{\prime} x_{1} x_{2}\right)$ and $\Delta_{m i x} H=0$.

Figure 3: Same plot for $\mu_{1}^{*}=-1 \mathrm{~kJ} / \mathrm{mol}$ and $\mu_{2}^{*}=-2 \mathrm{~kJ} / \mathrm{mol}$.
g) $\Delta_{m i x} H=0$ suggests that the solution behaves as ideal. This is however not the case because $S^{E}=-g R x(1-x) \neq 0$ and therefore we are dealing with an athermal mixture (cf. once more exercise 17 d).

Exercise A5

We calculate the freezing point using the data $T_{\mathrm{H}_{2} \mathrm{O}}^{*}=273.15 \mathrm{~K} ; \Delta_{\text {fus }} H_{\mathrm{H}_{2} \mathrm{O}}=6.008 \mathrm{~kJ} / \mathrm{mol} ; M_{\text {sucrose }}=$ $342.30 \mathrm{~g} / \mathrm{mol} ; M_{\mathrm{H}_{2} \mathrm{O}}=18.015 \mathrm{~g} / \mathrm{mol}$ and $\rho_{\mathrm{H}_{2} \mathrm{O}}=0.997 \mathrm{~g} / \mathrm{cm}^{-3} . M$ and ρ are specified at 298 K and 293 K , respectively. The error due to the temperature difference we can neglect, in particular because the expression we use for the freezing point depression already has quite some approximations in its derivation.

$$
\Delta T=K x_{B}, \quad \text { where } \quad K=\frac{R T^{* 2}}{\Delta_{f u s} H} \quad \text { so } \quad \Delta T=\frac{8.314 \cdot 273.15^{2}}{6.008 \cdot 10^{3}} \frac{\frac{7.5}{342.30}}{\frac{7.5}{342.30}+\frac{0.977 .250}{18.015}}=0.161 \mathrm{~K}
$$

Exercise A6

We can calculate the freezing point depression using $\Delta T=K x_{B}$ in which $K=\frac{R T^{* 2}}{\Delta_{f u s} H}$. We use the values $T_{\mathrm{H}_{2} \mathrm{O}}^{*}=273.15 \mathrm{~K} ; \Delta_{\text {fus }} H_{\mathrm{H}_{2} \mathrm{O}}=6.008 \mathrm{~kJ} / \mathrm{mol} ; M_{\mathrm{H}_{2} \mathrm{O}}=18.015 \mathrm{~g} / \mathrm{mol}$ and $\rho_{\mathrm{H}_{2} \mathrm{O}}=0.997 \mathrm{~g} / \mathrm{cm}^{-3}$, resulting in $K=\frac{8.314 \cdot 273.15^{2}}{6.008 \cdot 10^{3}}=103.2 \mathrm{~K}$. For a melting point depression of $\Delta T=1{ }^{\circ} \mathrm{C}$ we need a mole fraction of solute of $x_{B}=\frac{\Delta T}{K}=\frac{1}{103.2}=9.7 \cdot 10^{-3} \cdot x_{B}=\frac{n_{B}}{n_{A}+n_{B}} \approx \frac{n_{B}}{n_{A}}$. The necessary amount of grams is therefore $m_{B}=n_{B} M_{B} \approx x_{B} n_{A} M_{B}=x_{B} \frac{m_{A}}{M_{A}} M_{B}$. So for $1 \mathrm{~L} \approx 10^{3} \mathrm{~g}$ water we need $m_{B} \approx 9.7 \cdot 10^{-3} \frac{10^{3}}{18.015} M_{B}=0.54 M_{B}(\mathrm{~g})$.
a) $M_{\mathrm{DMSO}}=78.13 \mathrm{~g} / \mathrm{mol}$, so the necessary amount is $m_{\mathrm{DMSO}} \approx 42 \mathrm{~g}$.
b) $M_{\text {sucrose }}=342.30 \mathrm{~g} / \mathrm{mol}$, so the necessary amount is $m_{\text {sucrose }} \approx 184 \mathrm{~g}$. This seems a lot, but the solubility is $2115 \mathrm{~g} / \mathrm{L}$ at $20^{\circ} \mathrm{C}$, so it will work just fine.
c) In this case we have two complications. First of all, we increase the amount of water by adding the the hydrochloric acid (hopefully negligible for an estimate). Secondly, we have a factor $1 / 2$ in x_{B} because the strong acid fully dissociates into two ions. To start of we neglect the increase of the amount of water: $M_{\mathrm{HCl}}=36.5 \mathrm{~g} / \mathrm{mol}$, so $m_{\mathrm{HCl}} \approx \frac{1}{2} \cdot 0.54 \cdot 36.5=9.8 \mathrm{~g}$, which corresponds
to about 0.27 L hydrochloric acid. That is not quite negligible compared to 1 L and therefore an underestimation.
We repeat the calculation without the assumption. Each mol ions corresponds to 0.5 mol HCl and therefore 0.5 L added hydrochloric acid, which is about 28 mol water. So we have to replace $x_{B}=\frac{n_{B}}{n_{A}+n_{B}}$ by $x_{B}=\frac{n_{B}}{n_{A}+28 n_{B}+n_{B}}$. Using $\Delta T=K x_{B}$ we find $n_{B}=\frac{n_{A}}{\frac{K}{\Delta T}-29}=\frac{\frac{10^{3}}{18.015}}{103.2-29}=0.75 \mathrm{~mol}$, so 0.37 L hydrochloric acid (about 370 g).

