
Answers Additional Tutorial B, Thermodynamics 2, 2023/2024

Exercise B1

a) The phase diagram is outlined in figure 1.
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Figure 1: The Mg-Pb phase diagram.

b) The phase diagram is outlined in figure 2.
Gibbs’ phase rule for C = 2 and given pressure becomes F ′ = C −P + 1 = 2−P + 1 = 3−P , such
that for the case of a two-phase regime there is merely one free variable. The corresponding areas
are hatched and we can apply the lever rule there.
Eutectic points are present at compositions xFeCl2 = 0.38 and xFeCl2 = 0.54. Only for these points,
on passing via a cooling isopleth, starting in the liquid phase only two solids are formed with
compositions that do not change anymore. The lever rule gives their relative amounts.
K2FeCl4 melts incongruently at 380 ◦C, implying that it decomposes into a liquid phase and solid
KCl.

c) On cooling a liquid with composition xFeCl2 = 0.36 starting at 500 ◦C on reaching the liquidus
the first K2FeCl4(s) is formed and on further cooling the system enriches in FeCl2 until at 351 ◦C
the liquid disappears and also KFeCl3(s) is formed. The lever rule can be used to find the relative
amounts of the two solids K2FeCl4(s) and KFeCl3(s).

Exercise B2

a) There is no other work than volume work (dW ′ = 0), so the change in Gibbs free energy can be
written as
dG = V dP − SdT + µdn.

b) From this equation the following Maxwell relation can be derived(
∂µ
∂P

)
T,n

=
(
∂V
∂n

)
P,T(

∂µ
∂P

)
T,n

describes the pressure dependence of the chemical potential.
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Figure 2: The KCl-FeCl2 phase diagram.

(
∂V
∂n

)
P,T

= V , is the partial molar volume, which for a unary (one-component) system is the same

as the molar volume Vm = V/n.

c) For a perfect gas we have V = nRT
P , such that(

∂V
∂n

)
P,T

= RT
P , which together with the Maxwell relation leads to

(
∂µ
∂P

)
T,n

= RT
P or (dµ)T,n =(

RT
P dP

)
T,n

Integrating this relation leads to µ(P2)−µ(P1) = RT lnP2−RT lnP1. For the integration constant
we choose µ� = µ(P�) met P� = 1 bar, such that the most general solution (with this choice for
P ) becomes
µ(P2)− µ� = RT ln P2

P� , or
µ(P ) = µ� +RT lnP .
Note that lnx has only meaning for x having no units, so for a scalar. Therefore P has to be
interpreted as P

1 bar if we specify P in the unit ’bar’.

d) We use the Maxwell relation
(
∂µ
∂P

)
T,n

=
(
∂V
∂n

)
P,T

from part b. This relation leads after integration

to ∫
dµ =

∫ (
∂V

∂n

)
P,T

dP.

If we choose P� as reference, we find at pressure P

µ(P )− µ� =

∫ P

P�

(
∂V

∂n

)
P,T

dP

To determine the partial molar volume we rewrite the equation of state as a function V (n); ne-
glecting C(T ) and higher order terms we find PV 2 − nRTV − n2RTB(T ) = 0. This second order
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polynomial in V we can solve using the so-called ABC-formula:

V =
nRT ±

√
(nRT )

2
+ 4Pn2RTB(T )

2P
.

The appropriate sign in this solution we can find by studying the limit of the perfect gas, which
we find by taking B(T ) = 0; in this way we find the perfect gas equation of state for the ’+’-sign
(the ’−’-sign results in V = 0, which is not a proper solution). For the partial molar volume as a
function of P we thus find(

∂V

∂n

)
P,T

=
RT

2P
+

2nR2T 2 + 8nPRTB(T )

4P

√
(nRT )

2
+ 4Pn2RTB(T )

=
RT

2P
+

√
(nRT )

2
+ 4Pn2RTB(T )

2Pn
.

This result we could have obtained also more easily by realising that for a unary stem, whether or
not it concerns a perfect gas, the partial molar volume is simply V/n.
The equation can be simplified to(

∂V

∂n

)
P,T

=
RT

2P
+

√(
RT

2P

)2

+ 2B(T )
RT

2P
.

The chemical potential now becomes

µ(P )− µ� =

∫ P

P�

RT
2P

+

√(
RT

2P

)2

+ 2B(T )
RT

2P

dP.

Choosing a new variable x = RT
2P with ∂P

∂x = ∂P
∂ RT

2P

= − 2P 2

RT = −RT2
1
x2 , we find

µ(P )− µ� = −RT
2

∫ x(P )

x�

1

x2

[
x+

√
x2 + 2Bx

]
dx = −RT

2

∫ x(P )

x�

[
1

x
+

√
1

x2
+

2B

x3

]
dx.

This is a tough integral to solve, but Maple helps us out. The primitive of the integrant turns out
to be:

ln (x) +
1

Bx2

(
−
(
x2 + 2Bx

)3/2
+ x2

√
x2 + 2Bx+ x2B ln

(
B + x+

√
x2 + 2Bx

))
Plotting the chemical potential as a function of P between P = P� = 1 bar and P = 10P� at
T = 273 K for the gas CO2, for which B(273 K) = −142 cm3/mol and µ� = −394.36 kJ/mol, we
find the result of figure 3, in which also the perfect gas case is drawn for B = 0 as the lower curve.
Note that the two curves intersect at the chosen reference pressure P� because also for the perfect
gas case we used the real gas value of µ� = −394.36 kJ/mol. Futhermore µ for the non-perfect
case, B 6= 0, is less negative as compared to the perfect gas, which is in correspondence with the
fact that B < 0.

Exercise B3

The net reaction is

Zn(s) + Cu2+(aq) � Zn2+(aq) + Cu(s)

a) Since Zn(s) and Cu(s) are already in their standard state (so ∆fH
�(Cu) = ∆fH

�(Zn) = 0), ∆rH
�

can be calculated using.

∆rH
� = ∆fH

�(Zn2+, aq)−∆fH
�(Cu2+, aq) = (−153.89− 64.77)kJ/mol = −218.66 kJ/mol.

N.B. ∆fH
� is the standard enthalpy of formation, not to be confused with the enthalpy of fusion

∆fusH.

3



P

−39.0

−39.1

−39.2

−39.3

−39.4

1 2 4 6 8 10

µ
(k
J/
m
o
l)

(bar)
1

B = 0

B < 0

Figure 3: The chemical potential as a function of P for the non-perfect gas CO2, for which B(273 K) =
−142 cm3/mol and µ� = −394.36 kJ/mol.

b) ∆rG
� can be calculated using

∆rG
� = ∆fG

�(Zn2+, aq)−∆fG
�(Cu2+, aq).

∆fG
�(Zn2+, aq) = ∆fH

�(Zn2+, aq)−T∆fS
�(Zn2+, aq) = −153.89−298·(−22.92·10−3) = −147.06kJ/mol,

so

∆rG
� = (−147.06− 65.49) = −212.55 kJ/mol.

c) We find the standard electrochemical potential for the whole reaction using

∆rG
� = −νF

[
E�(Cu2+/Cu)− E�(Zn2+/Zn)

]
,

so

E�(Zn2+/Zn) = 0.34 +
−212.55 · 103

2 · 96458.3
= −0.76 V.

d) For the reaction

Zn2+ + 2e− � Zn(s).

we have

∆rG
� = ∆fG

�(Zn(s))−∆fG
�(Zn2+, aq) = −∆fG

�(Zn2+, aq) = 147.06kJ/mol,

resulting in the same value as found before:

E�(Zn2+/Zn) = −∆rG
�

νF
= −147.06 · 103

2 · 96458.3
= −0.76 V.
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Exercise B4

The overall reaction of the two half reactions is

PbSO4(s)+H3O+(aq)+PbSO4(s)+5H2O(l)↔ Pb(s)+HSO−4 (aq)+H2O(l)+PbO2(s)+3H3O+(aq)+HSO−4 (aq),

which simplified becomes

2PbSO4(s) + 4H2O(l)↔ Pb(s) + PbO2(s) + 2H3O+(aq) + 2HSO−4 (aq),

with a cell potential of E� = −0.356− 1.685 = −2.041 V. The battery has 6 of those half cells in series,
which gives a total standard potential E�

batt. = 6 · (−2.041) = −12.25 V for the battery at a temperature
of 298 K.
E�
batt. < 0, so the reaction will run spontaneous towards the left. Under standard conditions we have

aH3O+ = 1, and thus pH ≡ − log aH3O+ = 0.

a) The charged battery has a potential of E = −12.65 V. The ‘-‘sign is a result of the choice of
reactants and products in the overall reaction.

Wmax = ∆rG = −νFE = −2FE = −2 · 9.6485 · 104 · (−12.65) = 2441 kJ/mol.

b) Using the Maxwell relation that we derived in exercise 3 to calculate the entropy(
∂E

∂T

)
q,P

= −
(
∂S

∂q

)
T,P

,

we find that per mole of converted lead (
(
∂E
∂T

)
q,P

= +0.022 V/K because of the way we defined the

overall reaction)

∆rS = −
(
∂E

∂T

)
q,P

∆q = −
(
∂E

∂T

)
q,P

(−νF ) = −(+0.022) · (−2 · 96485) = 4.25 · 103 J/molK.

c) The E.M.F of the charged battery is -12.65/6 = -2.108 V and the standard cell potential is E� =
−2.041 V. Using the Nernst equation we find

E = E� − RT

νF
lnQ = E� − RT

2F
ln a2H3O+ · a2HSO−

4
,

so

a2H3O+ · a2HSO−
4

= exp

[
−2F (E − E�)

RT

]
= exp

[
−2 · 96485 (−2.108− (−2.041))

8.314 · 298

]
= 184.6.

We know that the charged battery has pH = 1, and thus − log aH3O+ = 1, so aH3O+ = 0.1. When
we use this result we find aHSO−

4
= 135.9.

d) The Debye Hückel limiting law gives (on the molality scale)

log γ± = −|z+z−|AI
1
2 and µi = µ�

i +RT ln ai = µ�
i +RT ln

bi
b�

+RT ln γ±

For the individual (mean) activities we then find

aH3O+ = γ±
bH3O+

b�
and aHSO−

4
= γ±

HSO−4
b�

.

Substituting in the results (bH3O+ = bHSO−
4
≡ b, according to the reaction equation)

log γ± = −1 · 1 · 0.509

[
1

2

bH3O+

b�
+

1

2

bHSO−
4

b�

] 1
2

= −0.509

[
b

b�

] 1
2

,
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so (b� = 1 mol/kg)

aH3O+ = b · 10−0.509·b
1
2 and aHSO−

4
= b · 10−0.509·b

1
2 .

If we use this in the Nernst equation (part c) we find

E = E� − RT

νF
ln

[
b · 10−0.509·b

1
2 · b · 10−0.509·b

1
2

]2
= E� − 4

RT

νF
ln

[
b · 10−0.509·b

1
2

]
,

so

b · 10−0.509·b
1
2 = exp

[
−νF (E − E�)

4RT

]
= exp

[
−2 · 96485 (−2.108− (−2.041))

4 · 8.314 · 298

]
= 3.686.

This equation cannot be solved analytically. If we plot the left part as a function of b, we find a
function with a maximum at b ≈ 3 mol/kg with a value of just under 0.4. In other words: there is
no solution to this equation. The Debye Hückel limiting law only works with reasonable certainty
for solutions with very low concentrations (typically b ≤ 0.01 mol/kg).
If we are to trust the theory for a value of b = 0.01 mol/kg, the left part becomes 9 · 10−3. If we
use this value, we find a corresponding terminal voltage of E = E� + 0.243 = −1.798 V, so for the
whole battery 6 · (−1.798) = −10.8 V. If we measure such a low voltage, it is probably about time
to call the road service to recharge the battery.

Exercise B5

a) We work at constant pressure and temperature so G is the most appropriate state function. For
the heat we need a state function in terms of dQ and for example dP , which is the enthalpy H.
We have an additional (elektrical) work term dWe = Edq, where E is the EMF (ElectroMotive
Force or cell voltage) and dq the charge transferred by the cell (the system), so
dH = V dP + TdS + Edq.
For a reversible process in the cell TdS = dQrev such that dH = V dP + dQrev + Edq.
P is constant (dP = 0), so ∆H = Qrev + E∆q, or Qrev = ∆H − E∆q.
The cell (the system) delivers current to the surroundings, so the elektrical work is negative and
We = E∆q = −EνF = −0.046 · 2 · 9.6485 · 104 = −8.88 kJ/mol, so the heat is
Qrev = 11.08− (−8.88) = 19.96 kJ/mol. This heat is positive so the cell delivers current but has to
take up heat from the surrounding to keep the temperature constant, so formally, the heat produced
by the cell is negative:
Qrevproduced = −19.96 kJ/mol.

b) In this case the mixture is the system. The reaction proceeds in the mixture and it proceeds
spontaneously, because E > 0. In this case no current is delivered to the surroundings, so dq = 0.
Furthermore there is no measurable cell voltage, so we put E = 0. This might suggest wrongly that
dG = V dP −SdT +Edq = 0. Because of the spontaneous reaction dG < 0 must hold. Furthermore
we could still use E to determine whether the reaction proceeds spontaneously or not.
In general the characteristic equation of the Gibbs free energy is dG = V dP − SdT +

∑
i µidni.

We van no longer replace the term
∑
i µidni with the term Edq, as we do for the case of an

electrochemical cell.
For the enthalpy we now have to write dH = V dP + dQrev +

∑
i µidni. H is a state function and

per mole reacted silver ∆H is therefore independent of whether we are dealing with the mixture or
the cell of part a), so also in this case ∆H = 11.08 kJ/mol. The pressure is constant and equal to
Pext. = 1 bar, so still dP = 0 and the change in enthalpy is equal to the irreversibele reaction heat
in the system, Q = 11.08kJ/mol, which is positive; the heat is taken up by the mixture to keep the
temperature constant. So, again formally, the heat produced by the cell is negative:
Qirrproduced = −11.08 kJ/mol.
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c) For the Gibbs energy we have dG = V dP − SdT + Edq = V dP − SdT +
∑
i µidni.

So ∆GP,T = E∆q = −0.046 · 2 · 9.6485 · 104 = −8.88 kJ/mol.
G is a state function, so also independent of the cell situation or the mixture.
In both cases ∆G = −8.88 kJ/mol.

d) To determine
(
∂E
∂T

)
P,q

we choose the variables T , P and q as independent variables, so the Gibbs

function with dG = V dP − SdT + Edq.
At constant pressure this becomes dG = −SdT + Edq. G is a state function so(
∂2G
∂T∂q

)
P

=
(
∂2G
∂q∂T

)
P

, so we can use the Maxwell relation(
∂E
∂T

)
P,q

= −
(
∂S
∂q

)
P,T

to find(
∂E
∂T

)
P,q

= − 1
T

(
∂Qrev

∂q

)
P,T

= − 1
300

19.90·103
−2·9.6485·104 = 3.43 · 10−4 V/K.(

∂E
∂T

)
P,q

= 3.43 · 10−4 V/K.

Exercise B6

a) We are searching a redox couple with a reduction potential which is more negative than E�(Eu3+/Eu)
but less negative than E�(Yb3+/Yb), such that only Eu precipitates. Such a couple should there-
fore have −1.991 V < E� < −2.19 V.
The data section of Atkins shows that scandium (E�(Sc3+/Sc) = −2.09 V) is possible candidate.

b) To have only Eu precipitated spontaneously we need to have

EEu/Sc > 0 for Eu3+ + Sc→ Eu + Sc3+

EYb/Sc < 0 for Yb3+ + Sc→ Yb + Sc3+

We use the Nernst equation to find the potentials:

EEu|Sc = E�
Eu|Sc −

RT

3F
ln
aSc3+

aEu3+

> 0, or
aSc3+

aEu3+

< exp

(
3FE�

Eu|Sc

RT

)

EYb|Sc = E�
Yb|Sc −

RT

3F
ln
aSc3+

aYb3+

< 0, or
aSc3+

aYb3+

> exp

(
3FE�

Yb|Sc

RT

)
Combining these two conditions, we find

aYb3+

aEu3+

< exp

(
3FE�

Eu|Sc

RT
−

3FE�
Yb|Sc

RT

)
= exp

(
3FE�

Eu|Yb

RT

)
.

The standard potentials of the half reactions are:

EEu|Yb = −1.991− (−2.19) = +0.20 V,

so the condition becomes

aYb3+

aEu3+

< exp

(
3 · 96485 · 0.20

8.3145 · 298

)
= 1.4 · 1010.

Exercise B7

a) There are three relevant reaction equations according to

CO2(aq) + H2O(l) � H2CO3(aq) (1)

H2CO3(aq) � H+(aq) + HCO−3 (aq) (2)

HCO−3 (aq) � H+(aq) + CO2−
3 (aq) (3)
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b) We determine the thermodynamic equilibrium constants for the equations usingRT lnKi = −∆riG
� (i =

1, 2, 3). We calculate ∆rG
�
i using the data from Atkins’ tables for ∆fG

�
j , where j denotes the com-

ponents of reaction i. This results in the following table (T = 298.15 K).

Component H2CO3(aq) CO2(aq) H2O(l) H+(aq) HCO−3 (aq) CO2−
3 (aq)

∆fG
�
j (kJ/mol) -623.08 -385.98 -237.13 0 -586.77 -527.81

Reaction 1 2 3
∆rG

� (kJ/mol) 0.03 36.31 58.96
K 0.988 4.31 · 10−7 4.68 · 10−11

c) αCO2 =
nCO2

nC
, etc, where nC is the total amount of carbon containing components (nC = nCO2 +

nH2CO3
+ nHCO−

3
+ nCO2−

3
). Conservation of carbon massa implies that

αCO2
+ αH2CO3

+ αHCO−
3

+ αCO2−
3

= 1.

From the definition of the thermodynamic equilibrium constant we find (assume that the activities
of the carbon containing components can be approximated by the mole fractions (ai = γixi ≈ xi =
ni

ntot
)):

Reaction (1): aH2CO3
= K1aCO2

, or αH2CO3

nC

ntot
= K1αCO2

nC

ntot
, so αH2CO3

= K1αCO2
.

Reaction (2): aHCO−
3

= K2aH2CO3
/aH+ , ofwel αHCO−

3
= K2αH2CO3

/aH+ .

Reaction (3): aCO2−
3

= K3aHCO−
3
/aH+ , or αCO2−

3
= K3αHCO−

3
/aH+ .

Substituting these results we find αCO2
van CO2:

αCO2 =
1

1 +K1 + K1K2

aH+
+ K1K2K3

a2
H+

.

Because the pH is defined as pH = -10log aH+ we can plot the fraction as function of the pH. The
result is given in figure 4; the values are not exactly the same as the ones we found.

Figure 4: αCO2
as a function of pH for the relevant components.

For pH = 7.4 we find αCO2
= 0.0789. The other fractions we can find using the relations between

the activities and the equilibrium constants given above:
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αCO2
αH2CO3

αHCO−
3

αCO2−
3

0.0789 0.0780 0.861 0.00103

d) We use the Henry constant of CO2 and its vapour pressure in the atmosphere to determine the
mole fraction xCO2 in the oceans.

xCO2 =
PCO2

KCO2

=
3.3 · 10−4 atm

1.25 · 106 Torr

760 Torr

1 atm
= 2.006 · 10−7.

This mol fraction we can rewrite in terms of αCO2
and the total amount of carbon containing

components nC :

xCO2
=
nCO2

ntot
≈ nCO2

nH2O
=
αCO2

nC
nH2O

.

nH2O = [H2O]Voceanen = (1 g/cm
3
)(1 mol/18 g)(1.37 · 1018 m3) = 7.61 · 1022 mol,

with the following result

nC =
xCO2nH2O

αCO2

=
2.006 · 10−7 · 7.61 · 1022

0.0789
= 1.9 · 1017 mol.
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