Answers Additional Tutorial B, Thermodynamics 2, 2023/2024 Exercise B1

a) The phase diagram is outlined in figure 1.

Figure 1: The Mg-Pb phase diagram.

b) The phase diagram is outlined in figure 2. Gibbs' phase rule for C = 2 and given pressure becomes F' = C - P + 1 = 2 - P + 1 = 3 - P, such that for the case of a two-phase regime there is merely one free variable. The corresponding areas are hatched and we can apply the lever rule there. Eutectic points are present at compositions $x_{\text{FeCl}_2} = 0.38$ and $x_{\text{FeCl}_2} = 0.54$. Only for these points, on passing via a cooling isopleth, starting in the liquid phase only two solids are formed with

on passing via a cooling isopleth, starting in the liquid phase only two solids are formed with compositions that do not change anymore. The lever rule gives their relative amounts. K_2 FeCl₄ melts incongruently at 380 °C, implying that it decomposes into a liquid phase and solid KCl.

c) On cooling a liquid with composition $x_{\text{FeCl}_2} = 0.36$ starting at 500 °C on reaching the liquidus the first K₂FeCl₄(s) is formed and on further cooling the system enriches in FeCl₂ until at 351 °C the liquid disappears and also KFeCl₃(s) is formed. The lever rule can be used to find the relative amounts of the two solids K₂FeCl₄(s) and KFeCl₃(s).

Exercise B2

- a) There is no other work than volume work (dW' = 0), so the change in Gibbs free energy can be written as $dG = VdP - SdT + \mu dn.$
- b) From this equation the following Maxwell relation can be derived

$$\begin{pmatrix} \frac{\partial \mu}{\partial P} \end{pmatrix}_{T,n} = \begin{pmatrix} \frac{\partial V}{\partial n} \end{pmatrix}_{P,T} \\ \begin{pmatrix} \frac{\partial \mu}{\partial P} \end{pmatrix}_{T,n} \text{ describes the pressure dependence of the chemical potential.}$$

Figure 2: The KCl-FeCl₂ phase diagram.

 $\left(\frac{\partial V}{\partial n}\right)_{P,T} = \overline{V}$, is the partial molar volume, which for a unary (one-component) system is the same as the molar volume $V_m = V/n$.

c) For a perfect gas we have $V = \frac{nRT}{P}$, such that

 $\left(\frac{\partial V}{\partial n}\right)_{P,T} = \frac{RT}{P}$, which together with the Maxwell relation leads to $\left(\frac{\partial \mu}{\partial P}\right)_{T,n} = \frac{RT}{P}$ or $(d\mu)_{T,n} = \left(\frac{RT}{P}dP\right)_{T,n}$

Integrating this relation leads to $\mu(P_2) - \mu(P_1) = RT \ln P_2 - RT \ln P_1$. For the integration constant we choose $\mu^{\odot} = \mu(P^{\odot})$ met $P^{\odot} = 1$ bar, such that the most general solution (with this choice for P) becomes

$$\mu(P_2) - \mu^{\ominus} = RT \ln \frac{P_2}{P^{\ominus}}, \text{ or}$$

$$\mu(P) = \mu^{\odot} + RT \ln P.$$

Note that $\ln x$ has only meaning for x having no units, so for a scalar. Therefore P has to be interpreted as $\frac{P}{1 \text{ bar}}$ if we specify P in the unit 'bar'.

d) We use the Maxwell relation $\left(\frac{\partial \mu}{\partial P}\right)_{T,n} = \left(\frac{\partial V}{\partial n}\right)_{P,T}$ from part b. This relation leads after integration to

$$\int \mathrm{d}\mu = \int \left(\frac{\partial V}{\partial n}\right)_{P,T} \mathrm{d}P$$

If we choose P^{\odot} as reference, we find at pressure P

$$\mu(P) - \mu^{\ominus} = \int_{P^{\ominus}}^{P} \left(\frac{\partial V}{\partial n}\right)_{P,T} \mathrm{d}P$$

To determine the partial molar volume we rewrite the equation of state as a function V(n); neglecting C(T) and higher order terms we find $PV^2 - nRTV - n^2RTB(T) = 0$. This second order polynomial in V we can solve using the so-called ABC-formula:

$$V = \frac{nRT \pm \sqrt{(nRT)^2 + 4Pn^2RTB(T)}}{2P}.$$

The appropriate sign in this solution we can find by studying the limit of the perfect gas, which we find by taking B(T) = 0; in this way we find the perfect gas equation of state for the '+'-sign (the '-'-sign results in V = 0, which is not a proper solution). For the partial molar volume as a function of P we thus find

$$\left(\frac{\partial V}{\partial n}\right)_{P,T} = \frac{RT}{2P} + \frac{2nR^2T^2 + 8nPRTB(T)}{4P\sqrt{(nRT)^2 + 4Pn^2RTB(T)}} = \frac{RT}{2P} + \frac{\sqrt{(nRT)^2 + 4Pn^2RTB(T)}}{2Pn}.$$

This result we could have obtained also more easily by realising that for a unary stem, whether or not it concerns a perfect gas, the partial molar volume is simply V/n. The equation can be simplified to

$$\left(\frac{\partial V}{\partial n}\right)_{P,T} = \frac{RT}{2P} + \sqrt{\left(\frac{RT}{2P}\right)^2 + 2B(T)\frac{RT}{2P}}.$$

The chemical potential now becomes

$$\mu(P) - \mu^{\odot} = \int_{P^{\odot}}^{P} \left[\frac{RT}{2P} + \sqrt{\left(\frac{RT}{2P}\right)^2 + 2B(T)\frac{RT}{2P}} \right] dP$$

Choosing a new variable $x = \frac{RT}{2P}$ with $\frac{\partial P}{\partial x} = \frac{\partial P}{\partial \frac{RT}{2P}} = -\frac{2P^2}{RT} = -\frac{RT}{2}\frac{1}{x^2}$, we find

$$\mu(P) - \mu^{\odot} = -\frac{RT}{2} \int_{x^{\odot}}^{x(P)} \frac{1}{x^2} \left[x + \sqrt{x^2 + 2Bx} \right] \mathrm{d}x = -\frac{RT}{2} \int_{x^{\odot}}^{x(P)} \left[\frac{1}{x} + \sqrt{\frac{1}{x^2} + \frac{2B}{x^3}} \right] \mathrm{d}x.$$

This is a tough integral to solve, but Maple helps us out. The primitive of the integrant turns out to be:

$$\ln(x) + \frac{1}{Bx^2} \left(-\left(x^2 + 2Bx\right)^{3/2} + x^2\sqrt{x^2 + 2Bx} + x^2B\ln\left(B + x + \sqrt{x^2 + 2Bx}\right) \right)^{3/2}$$

Plotting the chemical potential as a function of P between $P = P^{\odot} = 1$ bar and $P = 10P^{\odot}$ at T = 273 K for the gas CO₂, for which $B(273 \text{ K}) = -142 \text{ cm}^3/\text{mol}$ and $\mu^{\odot} = -394.36 \text{ kJ/mol}$, we find the result of figure 3, in which also the perfect gas case is drawn for B = 0 as the lower curve. Note that the two curves intersect at the chosen reference pressure P^{\odot} because also for the perfect gas case we used the real gas value of $\mu^{\odot} = -394.36 \text{ kJ/mol}$. Futhermore μ for the non-perfect case, $B \neq 0$, is less negative as compared to the perfect gas, which is in correspondence with the fact that B < 0.

Exercise B3

The net reaction is

$$\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(\operatorname{aq}) \rightleftharpoons \operatorname{Zn}^{2+}(\operatorname{aq}) + \operatorname{Cu}(s)$$

a) Since Zn(s) and Cu(s) are already in their standard state (so $\Delta_f H^{\odot}(Cu) = \Delta_f H^{\odot}(Zn) = 0$), $\Delta_r H^{\odot}$ can be calculated using.

 $\Delta_r H^{\odot} = \Delta_f H^{\odot}(\text{Zn}^{2+}, \text{aq}) - \Delta_f H^{\odot}(\text{Cu}^{2+}, \text{aq}) = (-153.89 - 64.77)\text{kJ/mol} = -218.66 \text{ kJ/mol}.$ N.B. $\Delta_f H^{\odot}$ is the standard enthalpy of *formation*, not to be confused with the enthalpy of fusion $\Delta_{fus} H.$

Figure 3: The chemical potential as a function of P for the non-perfect gas CO₂, for which $B(273 \text{ K}) = -142 \text{ cm}^3/\text{mol}$ and $\mu^{\odot} = -394.36 \text{ kJ/mol}$.

b) $\Delta_r G^{\odot}$ can be calculated using

$$\Delta_r G^{\odot} = \Delta_f G^{\odot}(\operatorname{Zn}^{2+}, \operatorname{aq}) - \Delta_f G^{\odot}(\operatorname{Cu}^{2+}, \operatorname{aq}).$$

$$\begin{split} \Delta_f G^{\odot}(\text{Zn}^{2+},\text{aq}) &= \Delta_f H^{\odot}(\text{Zn}^{2+},\text{aq}) - T\Delta_f S^{\odot}(\text{Zn}^{2+},\text{aq}) = -153.89 - 298 \cdot (-22.92 \cdot 10^{-3}) = -147.06 \text{kJ/mol}, \\ \text{so} \end{split}$$

$$\Delta_r G^{\odot} = (-147.06 - 65.49) = -212.55 \text{ kJ/mol.}$$

c) We find the standard electrochemical potential for the whole reaction using

$$\Delta_r G^{\odot} = -\nu F \left[E^{\odot} (\mathrm{Cu}^{2+}/\mathrm{Cu}) - E^{\odot} (\mathrm{Zn}^{2+}/\mathrm{Zn}) \right],$$

 \mathbf{SO}

$$E^{\odot}(\text{Zn}^{2+}/\text{Zn}) = 0.34 + \frac{-212.55 \cdot 10^3}{2 \cdot 96458.3} = -0.76 \text{ V}.$$

d) For the reaction

$$\operatorname{Zn}^{2+} + 2e^{-} \rightleftharpoons \operatorname{Zn}(s).$$

we have

$$\Delta_r G^{\odot} = \Delta_f G^{\odot}(\mathrm{Zn}(\mathrm{s})) - \Delta_f G^{\odot}(\mathrm{Zn}^{2+}, \mathrm{aq}) = -\Delta_f G^{\odot}(\mathrm{Zn}^{2+}, \mathrm{aq}) = 147.06 \mathrm{kJ/mol}$$

resulting in the same value as found before:

$$E^{\odot}(\mathrm{Zn}^{2+}/\mathrm{Zn}) = -\frac{\Delta_r G^{\odot}}{\nu F} = -\frac{147.06 \cdot 10^3}{2 \cdot 96458.3} = -0.76 \text{ V}.$$

Exercise B4

The overall reaction of the two half reactions is

 $PbSO_4(s) + H_3O^+(aq) + PbSO_4(s) + 5H_2O(l) \leftrightarrow Pb(s) + HSO_4^-(aq) + H_2O(l) + PbO_2(s) + 3H_3O^+(aq) + HSO_4^-(aq),$

which simplified becomes

$$2PbSO_4(s) + 4H_2O(l) \leftrightarrow Pb(s) + PbO_2(s) + 2H_3O^+(aq) + 2HSO_4^-(aq),$$

with a cell potential of $E^{\odot} = -0.356 - 1.685 = -2.041$ V. The battery has 6 of those half cells in series, which gives a total standard potential $E_{batt.}^{\odot} = 6 \cdot (-2.041) = -12.25$ V for the battery at a temperature of 298 K.

 $E_{batt.}^{\odot} < 0$, so the reaction will run spontaneous towards the left. Under standard conditions we have $a_{H_3O^+} = 1$, and thus $pH \equiv -\log a_{H_3O^+} = 0$.

a) The charged battery has a potential of E = -12.65 V. The '-'sign is a result of the choice of reactants and products in the overall reaction.

$$W_{max} = \Delta_r G = -\nu F E = -2F E = -2 \cdot 9.6485 \cdot 10^4 \cdot (-12.65) = 2441 \text{ kJ/mol}.$$

b) Using the Maxwell relation that we derived in exercise 3 to calculate the entropy

$$\left(\frac{\partial E}{\partial T}\right)_{q,P} = -\left(\frac{\partial S}{\partial q}\right)_{T,P}$$

we find that per mole of converted lead $\left(\left(\frac{\partial E}{\partial T}\right)_{q,P} = +0.022 \text{ V/K}$ because of the way we defined the overall reaction)

$$\Delta_r S = -\left(\frac{\partial E}{\partial T}\right)_{q,P} \Delta q = -\left(\frac{\partial E}{\partial T}\right)_{q,P} (-\nu F) = -(+0.022) \cdot (-2 \cdot 96485) = 4.25 \cdot 10^3 \text{ J/molK}.$$

c) The E.M.F of the charged battery is -12.65/6 = -2.108 V and the standard cell potential is $E^{\odot} = -2.041$ V. Using the Nernst equation we find

$$E = E^{\odot} - \frac{RT}{\nu F} \ln Q = E^{\odot} - \frac{RT}{2F} \ln a_{\rm H_3O^+}^2 \cdot a_{\rm HSO_4^-}^2$$

 \mathbf{SO}

$$a_{\mathrm{H}_{3}\mathrm{O}^{+}}^{2} \cdot a_{\mathrm{HSO}_{4}^{-}}^{2} = \exp\left[-\frac{2F\left(E - E^{\odot}\right)}{RT}\right] = \exp\left[-\frac{2 \cdot 96485\left(-2.108 - (-2.041)\right)}{8.314 \cdot 298}\right] = 184.6.$$

We know that the charged battery has pH = 1, and thus $-\log a_{H_3O^+} = 1$, so $a_{H_3O^+} = 0.1$. When we use this result we find $a_{HSO_4^-} = 135.9$.

d) The Debye Hückel limiting law gives (on the molality scale)

$$\log \gamma_{\pm} = -|z_{\pm}z_{\pm}|AI^{\frac{1}{2}}$$
 and $\mu_{i} = \mu_{i}^{\ominus} + RT \ln a_{i} = \mu_{i}^{\ominus} + RT \ln \frac{b_{i}}{b^{\ominus}} + RT \ln \gamma_{\pm}$

For the individual (mean) activities we then find

$$a_{\mathrm{H_3O^+}} = \gamma_{\pm} \frac{b_{\mathrm{H_3O^+}}}{b^{\odot}} \quad \mathrm{and} \quad a_{\mathrm{HSO_4^-}} = \gamma_{\pm} \frac{\mathrm{HSO_4^-}}{b^{\odot}}$$

Substituting in the results $(b_{H_3O^+} = b_{HSO_4^-} \equiv b, \text{ according to the reaction equation})$

$$\log \gamma_{\pm} = -1 \cdot 1 \cdot 0.509 \left[\frac{1}{2} \frac{b_{\mathrm{H}_{3}\mathrm{O}^{+}}}{b^{\odot}} + \frac{1}{2} \frac{b_{\mathrm{HSO}_{4}^{-}}}{b^{\odot}} \right]^{\frac{1}{2}} = -0.509 \left[\frac{b}{b^{\odot}} \right]^{\frac{1}{2}},$$

so $(b^{\odot} = 1 \text{ mol/kg})$

$$a_{\mathrm{H}_{3}\mathrm{O}^{+}} = b \cdot 10^{-0.509 \cdot b^{\frac{1}{2}}}$$
 and $a_{\mathrm{HSO}_{4}^{-}} = b \cdot 10^{-0.509 \cdot b^{\frac{1}{2}}}$

If we use this in the Nernst equation (part c) we find

$$E = E^{\odot} - \frac{RT}{\nu F} \ln \left[b \cdot 10^{-0.509 \cdot b^{\frac{1}{2}}} \cdot b \cdot 10^{-0.509 \cdot b^{\frac{1}{2}}} \right]^2 = E^{\odot} - 4 \frac{RT}{\nu F} \ln \left[b \cdot 10^{-0.509 \cdot b^{\frac{1}{2}}} \right],$$

 \mathbf{SO}

$$b \cdot 10^{-0.509 \cdot b^{\frac{1}{2}}} = \exp\left[-\frac{\nu F(E - E^{\odot})}{4RT}\right] = \exp\left[-\frac{2 \cdot 96485 \left(-2.108 - \left(-2.041\right)\right)}{4 \cdot 8.314 \cdot 298}\right] = 3.686.$$

This equation cannot be solved analytically. If we plot the left part as a function of b, we find a function with a maximum at $b \approx 3 \text{ mol/kg}$ with a value of just under 0.4. In other words: there is no solution to this equation. The Debye Hückel limiting law only works with reasonable certainty for solutions with very low concentrations (typically $b \leq 0.01 \text{ mol/kg}$).

If we are to trust the theory for a value of b = 0.01 mol/kg, the left part becomes $9 \cdot 10^{-3}$. If we use this value, we find a corresponding terminal voltage of $E = E^{\odot} + 0.243 = -1.798 \text{ V}$, so for the whole battery $6 \cdot (-1.798) = -10.8 \text{ V}$. If we measure such a low voltage, it is probably about time to call the road service to recharge the battery.

Exercise B5

a) We work at constant pressure and temperature so G is the most appropriate state function. For the heat we need a state function in terms of dQ and for example dP, which is the enthalpy H.

We have an additional (elektrical) work term $dW_e = Edq$, where E is the EMF (ElectroMotive Force or cell voltage) and dq the charge transferred by the cell (the system), so dH = VdP + TdS + Edq.

For a reversible process in the cell $TdS = dQ^{rev}$ such that $dH = VdP + dQ^{rev} + Edq$.

P is constant (dP = 0), so $\Delta H = Q^{rev} + E\Delta q$, or $Q^{rev} = \Delta H - E\Delta q$.

The cell (the system) delivers current to the surroundings, so the elektrical work is negative and $W_e = E\Delta q = -E\nu F = -0.046 \cdot 2 \cdot 9.6485 \cdot 10^4 = -8.88 \text{ kJ/mol}$, so the heat is

 $Q^{rev} = 11.08 - (-8.88) = 19.96 \text{ kJ/mol.}$ This heat is positive so the cell delivers current but has to take up heat from the surrounding to keep the temperature constant, so formally, the heat *produced* by the cell is negative:

 $Q_{produced}^{rev} = -19.96 \text{ kJ/mol.}$

b) In this case the mixture is the system. The reaction proceeds in the mixture and it proceeds spontaneously, because E > 0. In this case no current is delivered to the surroundings, so dq = 0. Furthermore there is no measurable cell voltage, so we put E = 0. This might suggest wrongly that dG = VdP - SdT + Edq = 0. Because of the spontaneous reaction dG < 0 must hold. Furthermore we could still use E to determine whether the reaction proceeds spontaneously or not.

In general the characteristic equation of the Gibbs free energy is $dG = V dP - S dT + \sum_i \mu_i dn_i$. We van no longer replace the term $\sum_i \mu_i dn_i$ with the term E dq, as we do for the case of an electrochemical cell.

For the enthalpy we now have to write $dH = VdP + dQ^{rev} + \sum_i \mu_i dn_i$. *H* is a state function and per mole reacted silver ΔH is therefore independent of whether we are dealing with the mixture or the cell of part a), so also in this case $\Delta H = 11.08 \text{ kJ/mol}$. The pressure is constant and equal to $P_{ext.} = 1$ bar, so still dP = 0 and the change in enthalpy is equal to the irreversibele reaction heat in the system, Q = 11.08 kJ/mol, which is positive; the heat is taken up by the mixture to keep the temperature constant. So, again formally, the heat *produced* by the cell is negative: $Q_{produced}^{irr} = -11.08 \text{ kJ/mol}$.

- c) For the Gibbs energy we have $dG = VdP SdT + Edq = VdP SdT + \sum_i \mu_i dn_i$. So $\Delta G_{P,T} = E\Delta q = -0.046 \cdot 2 \cdot 9.6485 \cdot 10^4 = -8.88 \text{ kJ/mol}$. G is a state function, so also independent of the cell situation or the mixture. In both cases $\Delta G = -8.88 \text{ kJ/mol}$.
- d) To determine $\left(\frac{\partial E}{\partial T}\right)_{P,q}$ we choose the variables T, P and q as independent variables, so the Gibbs function with dG = V dP S dT + E dq. At constant pressure this becomes dG = -S dT + E dq. G is a state function so $\left(\frac{\partial^2 G}{\partial T \partial q}\right)_P = \left(\frac{\partial^2 G}{\partial q \partial T}\right)_P$, so we can use the Maxwell relation $\left(\frac{\partial E}{\partial T}\right)_{P,q} = -\left(\frac{\partial S}{\partial q}\right)_{P,T}$ to find $\left(\frac{\partial E}{\partial T}\right)_{P,q} = -\frac{1}{T} \left(\frac{\partial Q^{rev}}{\partial q}\right)_{P,T} = -\frac{1}{300} \frac{19.90 \cdot 10^3}{-2 \cdot 9.6485 \cdot 10^4} = 3.43 \cdot 10^{-4} \text{ V/K.}$ $\left(\frac{\partial E}{\partial T}\right)_{P,q} = 3.43 \cdot 10^{-4} \text{ V/K.}$

Exercise B6

a) We are searching a redox couple with a reduction potential which is more negative than $E^{\odot}(\text{Eu}^{3+}/\text{Eu})$ but less negative than $E^{\odot}(\text{Yb}^{3+}/\text{Yb})$, such that only Eu precipitates. Such a couple should therefore have $-1.991 \text{ V} < E^{\odot} < -2.19 \text{ V}$.

The data section of Atkins shows that scandium $(E^{\odot}(Sc^{3+}/Sc) = -2.09 \text{ V})$ is possible candidate.

b) To have only Eu precipitated spontaneously we need to have

 $E_{\rm Eu/Sc} > 0$ for ${\rm Eu}^{3+} + {\rm Sc} \rightarrow {\rm Eu} + {\rm Sc}^{3+}$ $E_{\rm Yb/Sc} < 0$ for ${\rm Yb}^{3+} + {\rm Sc} \rightarrow {\rm Yb} + {\rm Sc}^{3+}$

We use the Nernst equation to find the potentials:

$$E_{\rm Eu|Sc} = E_{\rm Eu|Sc}^{\odot} - \frac{RT}{3F} \ln \frac{a_{\rm Sc^{3+}}}{a_{\rm Eu^{3+}}} > 0, \quad \text{or} \quad \frac{a_{\rm Sc^{3+}}}{a_{\rm Eu^{3+}}} < \exp\left(\frac{3FE_{\rm Eu|Sc}^{\odot}}{RT}\right)$$
$$E_{\rm Yb|Sc} = E_{\rm Yb|Sc}^{\odot} - \frac{RT}{3F} \ln \frac{a_{\rm Sc^{3+}}}{a_{\rm Yb^{3+}}} < 0, \quad \text{or} \quad \frac{a_{\rm Sc^{3+}}}{a_{\rm Yb^{3+}}} > \exp\left(\frac{3FE_{\rm Yb|Sc}^{\odot}}{RT}\right)$$

Combining these two conditions, we find

$$\frac{a_{\mathrm{Yb}^{3+}}}{a_{\mathrm{Eu}^{3+}}} < \exp\left(\frac{3FE_{\mathrm{Eu}|\mathrm{Sc}}^{\odot}}{RT} - \frac{3FE_{\mathrm{Yb}|\mathrm{Sc}}^{\odot}}{RT}\right) = \exp\left(\frac{3FE_{\mathrm{Eu}|\mathrm{Yb}}^{\odot}}{RT}\right).$$

The standard potentials of the half reactions are:

 $E_{\rm Eu|Yb} = -1.991 - (-2.19) = +0.20 \,\rm V,$

so the condition becomes

$$\frac{a_{\rm Yb^{3+}}}{a_{\rm Eu^{3+}}} < \exp\left(\frac{3 \cdot 96485 \cdot 0.20}{8.3145 \cdot 298}\right) = 1.4 \cdot 10^{10}.$$

Exercise B7

a) There are three relevant reaction equations according to

$$CO_2(aq) + H_2O(l) \rightleftharpoons H_2CO_3(aq) \tag{1}$$

$$H_2CO_3(aq) \leftrightarrows H^+(aq) + HCO_3^-(aq)$$
⁽²⁾

$$HCO_3^-(aq) \leftrightharpoons H^+(aq) + CO_3^{2-}(aq)$$
(3)

b) We determine the thermodynamic equilibrium constants for the equations using $RT \ln K_i = -\Delta_{r_i} G^{\odot}$ (i = 1, 2, 3). We calculate $\Delta_r G_i^{\odot}$ using the data from Atkins' tables for $\Delta_f G_j^{\odot}$, where j denotes the components of reaction i. This results in the following table (T = 298.15 K).

Component	$H_2CO_3(aq)$	$\rm CO_2(aq)$	$H_2O(l)$	$H^+(aq)$	$HCO_3^-(aq)$	$CO_{3}^{2-}(aq)$
$\Delta_f G_j^{\odot} (\text{kJ/mol})$	-623.08	-385.98	-237.13	0	-586.77	-527.81

Reaction	1	2	3
$\Delta_r G^{\odot} (\text{kJ/mol})$	0.03	36.31	58.96
K	0.988	$4.31 \cdot 10^{-7}$	$4.68 \cdot 10^{-11}$

c) $\alpha_{\rm CO_2} = \frac{n_{\rm CO_2}}{n_C}$, etc, where n_C is the total amount of carbon containing components ($n_C = n_{\rm CO_2} + n_{\rm H_2CO_3} + n_{\rm HCO_3^-} + n_{\rm CO_3^{2-}}$). Conservation of carbon massa implies that

 $\alpha_{\mathrm{CO}_2} + \alpha_{\mathrm{H}_2\mathrm{CO}_3} + \alpha_{\mathrm{HCO}_3^-} + \alpha_{\mathrm{CO}_3^{2-}} = 1.$

From the definition of the thermodynamic equilibrium constant we find (assume that the activities of the carbon containing components can be approximated by the mole fractions $(a_i = \gamma_i x_i \approx x_i = \frac{n_i}{n_{tot}})$):

 $\begin{array}{l} \underset{Reaction}{\overset{n_{tot}}{(1):}} a_{\mathrm{H}_{2}\mathrm{CO}_{3}} = K_{1}a_{\mathrm{CO}_{2}}, \mbox{ or } \alpha_{\mathrm{H}_{2}\mathrm{CO}_{3}} \frac{n_{C}}{n_{tot}} = K_{1}\alpha_{\mathrm{CO}_{2}} \frac{n_{C}}{n_{tot}}, \mbox{ so } \alpha_{\mathrm{H}_{2}\mathrm{CO}_{3}} = K_{1}\alpha_{\mathrm{CO}_{2}}. \\ \mbox{ Reaction (2): } a_{\mathrm{HCO}_{3}^{-}} = K_{2}a_{\mathrm{H}_{2}\mathrm{CO}_{3}}/a_{\mathrm{H}^{+}}, \mbox{ of well } \alpha_{\mathrm{HCO}_{3}^{-}} = K_{2}\alpha_{\mathrm{H}_{2}\mathrm{CO}_{3}}/a_{\mathrm{H}^{+}}. \\ \mbox{ Reaction (3): } a_{\mathrm{CO}_{3}^{2-}} = K_{3}a_{\mathrm{HCO}_{3}^{-}}/a_{\mathrm{H}^{+}}, \mbox{ or } \alpha_{\mathrm{CO}_{3}^{2-}} = K_{3}\alpha_{\mathrm{HCO}_{3}^{-}}/a_{\mathrm{H}^{+}}. \\ \mbox{ Substituting these results we find } \alpha_{\mathrm{CO}_{2}} \mbox{ van CO}_{2}: \end{array}$

$$\alpha_{\rm CO_2} = \frac{1}{1 + K_1 + \frac{K_1 K_2}{a_{\rm H^+}} + \frac{K_1 K_2 K_3}{a_{\rm H^+}^2}}.$$

Because the pH is defined as $pH = -10 \log a_{H^+}$ we can plot the fraction as function of the pH. The result is given in figure 4; the values are not exactly the same as the ones we found.

Figure 4: $\alpha_{\rm CO_2}$ as a function of pH for the relevant components.

For pH = 7.4 we find $\alpha_{CO_2} = 0.0789$. The other fractions we can find using the relations between the activities and the equilibrium constants given above:

$\alpha_{\rm CO_2}$	$\alpha_{\mathrm{H}_{2}\mathrm{CO}_{3}}$	$\alpha_{\rm HCO_3^-}$	$\alpha_{\mathrm{CO}_3^{2-}}$
0.0789	0.0780	0.861	0.00103

d) We use the Henry constant of CO_2 and its vapour pressure in the atmosphere to determine the mole fraction x_{CO_2} in the oceans.

$$x_{\rm CO_2} = \frac{P_{\rm CO_2}}{K_{\rm CO_2}} = \frac{3.3 \cdot 10^{-4} \text{ atm}}{1.25 \cdot 10^6 \text{ Torr}} \frac{760 \text{ Torr}}{1 \text{ atm}} = 2.006 \cdot 10^{-7}.$$

This mol fraction we can rewrite in terms of $\alpha_{\rm CO_2}$ and the total amount of carbon containing components n_C :

$$x_{\rm CO_2} = \frac{n_{\rm CO_2}}{n_{tot}} \approx \frac{n_{\rm CO_2}}{n_{\rm H_2O}} = \frac{\alpha_{\rm CO_2} n_C}{n_{\rm H_2O}}.$$

 $n_{\rm H_2O} = [{\rm H_2O}]V_{\rm oceanen} = (1 \text{ g/cm}^3)(1 \text{ mol}/18 \text{ g})(1.37 \cdot 10^{18} \text{ m}^3) = 7.61 \cdot 10^{22} \text{ mol},$ with the following result

$$n_C = \frac{x_{\rm CO_2} n_{\rm H_2O}}{\alpha_{\rm CO_2}} = \frac{2.006 \cdot 10^{-7} \cdot 7.61 \cdot 10^{22}}{0.0789} = 1.9 \cdot 10^{17} \text{ mol.}$$