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Exercise 1
a) There are always three translational degrees of freedom (x, y, z) per molecule in three dimensions.

Since CO2 is a linear molecule, there are two axes of rotation,so two degrees of rotational freedom
per molecule. For this gas we thus have NT = 3N and NR = 2N .

b) Each CO2-molecule consists of three atoms with each three (translational) degrees of freedom, which
gives us a total of nine degrees of freedom per molecule: N tot = 9N .

c) N tot consists of NT , NR and the contribution of vibrational modes NV , therefore NV = N tot −
NT − NR = 9N − 3N − 2N = 4N . N.b., For a translation of the entire molecule the movements
of the three atoms are equal. For the two rotational modes, the oxygen atoms rotate around the
carbon atom. For one of the vibrational modes, the oxygen atoms move opposite of each other
along the axis of the molecule. For the other vibrational modes, the movements are somewhat more
complex.

d) The internal energy is 1
2kT per degree of freedom according to the equipartition theorem. The

rotational and translational modes have one degree of freedom and the vibrational modes have two
(kinetic and potential energy).
U = 1

2
(
NT +NR + 2NV

)
kT = 1

2 (3N + 2N + 2 · 4N) kT = 13
2 NkT for the entire gas or 13

2 RT =
13
2 8.314 · 1000 = 54.04 kJmol−1.

e) H = U + PV , which for a perfect gas, using the equation of state, implies H = U + nRT , which
means that the molar enthalpy equals H = 15

2 RT = 15
2 · 8.314 · 1000 = 62.36 kJmol−1.

N.b the PV -term is not affected by the rotations and vibrations at the high temperatures of the
equipartition theorem because their (quantum mechanical) energy levels are independent of V , as
opposed to the translations. Therefore PV = nRT remains valid.

f) cV =
(
∂U
∂T

)
V

= 13
2 R = 54.04 Jmol−1K−1, independent of the temperature! This only applies to a

perfect gas.

g) cP =
(
∂H
∂T

)
P

= 15
2 R = 62.36 Jmol−1K−1, independent of the temperature! This again only applies

to a perfect gas.
The cP (CO2) = 44.22+8.79 ·10−3T−8.62 ·105T−2 Jmol−1K−1 according to Atkins table 2B.1 (ed.
11). At a temperature of T = 2000 K that would give a value of cP (CO2, 2000K) = 44.22 + 8.79 ·
2− 8.62/40 = 61.58 Jmol−1K−1, which is smaller then the result of the equipartition theorem. The
cP as function of temperature is plotted in the figure below (from the boiling point of 195 K) for
both the equipartition value and data from Atkins; for the latter we silently (and certainly falsely)
assumed that this data is valid for the entire temperature range of the plot.
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Exercise 2
g(x, y) = ln

(
xy2)− x2y3.

a) g(x, y) is a state function if

∂2g

∂x∂y
= ∂2g

∂y∂x

Checking this gives

∂2g

∂x∂y
= ∂

∂x

(
∂g

∂y
|x
)
|y = ∂

∂x

(
1
xy2 2xy − 3x2y2

)
|y = ∂

∂x

(
2
y
− 3x2y2

)
|y = −6xy2, and

∂2g

∂y∂x
= ∂

∂y

(
∂g

∂x
|y
)
|x = ∂

∂y

(
∂g

∂x
|y
)
|x = ∂

∂y

(
1
xy2 y

2 − 2xy3
)
|x = ∂

∂y

(
1
x
− 2xy3

)
|x = −6xy2

These results are the same, so we are dealing with a state function.

b) The total differential of g(x, y) is dg(x, y) = gxdx+ gydy, with

gx(x, y) = ∂g

∂x
|y = 1

x
− 2xy3, and gy(x, y) = ∂g

∂y
|x = 2

y
− 3x2y2, so

dg(x, y) =
(

1
x
− 2xy3

)
dx+

(
2
y
− 3x2y2

)
dy.

c) The Maxwell relation between gx(x, y) and gy(x, y) is

∂gx
∂y
|x = ∂gy

∂x
|y, so

∂
( 1
x − 2xy3)
∂y

|x =
∂
(

2
y − 3x2y2

)
∂x

|y,

which worked out leads to

−6xy2 = −6xy2,

which shows that the Maxwell relation indeed holds.

d) We rewrite the Maxwell relation as

dgx = ∂gy
∂x

dy, and dgy = ∂gx
∂y

dx.

The total differential of g(x, y) is dg(x, y) = gxdx+ gydy.
To determine ∆gx between (x, y) = (1, 2) and (x, y) = (4, 3) by integrating g(x, y) first at constant
y and subsequently at constant x we find

∆g =
∫ (4,3)

(1,2)
dg(x, y) =

∫ (4,2)

(1,2)
gx(x, y)dx+

∫ (4,3)

(4,2)
gy(x, y)dy

=
∫ (4,2)

(1,2)

(
1
x
− 2xy3

)
dx+

∫ (4,3)

(4,2)

(
2
y
− 3x2y2

)
dy =

[
ln (x)− x2y3](4,2)

(1,2) +
[
2 ln (y)− x2y3](4,3)

(4,2)

=
(
ln 4− 42 · 23)− (ln 1− 12 · 23)+

(
2 ln 3− 42 · 33)− (2 ln 2− 42 · 23)

= (2 ln 2− 128)− (0− 8)) + (2 ln 3− 432)− (2 ln 2− 128) = 2 ln 2 · 3
2
− 324 = 2 ln 3− 324.
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The alternative integration path gives

∆g =
∫ (4,3)

(1,2)
dg(x, y) =

∫ (1,3)

(1,2)
gy(x, y)dy +

∫ (4,3)

(1,3)
gx(x, y)dx

=
∫ (1,3))

(1,2)

(
2
y
− 3x2y2

)
dy +

∫ (4,3)

(1,3)

(
1
x
− 2xy3

)
dx =

[
2 ln y − x2y3](1,3)

(1,2) +
[
lnx− x2y3](4,3)

(1,3)

=
(
2 ln 3− 12 · 33)− (2 ln 2− 12 · 23)+

(
ln 4− 42 · 33)− (ln 1− 12 · 33)

= 2 ln 3− 324.

This indeed gives the same result, which should be the case for a state function.
NOTE: It is important to note that the partial derivatives gx(x, y) and gy(x, y) are still a function
of both x and y, and their dependencies should be taken into account when integrating, as we did!

Exercise 3
a) The non-expansion work of the electrical cell is dW ′ = Edq, in which E is the EMF (electromotive

force, or cell potential, or preferably: cell voltage) and dq is the charge transfered.
For the characteristic equations we find
dU = −PdV + TdS + Edq
dH = V dP + TdS + Edq
dA = −PdV − SdT + Edq
dG = V dP − SdT + Edq

b) The first Maxwell-relation in the table below follows from(
∂2U

∂S∂V

)
q

=
(
∂2U

∂V ∂S

)
q

so
(
∂ (−P )
∂S

)
V,q

=
(
∂T

∂V

)
S,q

U
(
∂P
∂S

)
V,q

= −
(
∂T
∂V

)
S,q

(
∂P
∂q

)
V,S

= −
(
∂E
∂V

)
S,q

(
∂T
∂q

)
V,S

=
(
∂E
∂S

)
V,q

H
(
∂V
∂S

)
P,q

=
(
∂T
∂P

)
S,q

(
∂V
∂q

)
P,S

=
(
∂E
∂P

)
S,q

(
∂T
∂q

)
P,S

=
(
∂E
∂S

)
P,q

A
(
∂P
∂T

)
V,q

=
(
∂S
∂V

)
T,q

(
∂P
∂q

)
V,T

= −
(
∂E
∂V

)
T,q

(
∂S
∂q

)
V,T

= −
(
∂E
∂T

)
V,q

G
(
∂V
∂T

)
P,q

= −
(
∂S
∂P

)
T,q

(
∂V
∂q

)
P,T

=
(
∂E
∂P

)
T,q

(
∂S
∂q

)
P,T

= −
(
∂E
∂T

)
P,q

c) For an open system with one type of particle we need an extra term µdn, in which µ is the chemical
potential. For the characteristic equations we find
dU = −PdV + TdS + Edq + µdn
dH = V dP + TdS + Edq + µdn
dA = −PdV − SdT + Edq + µdn
dG = V dP − SdT + Edq + µdn

d) The Maxwell-relations that follow from the equation for the Gibbs free energy can be found in the
following overview. The three in the top row are the same as those in part b), besides being at
constant n. The other three are new relations for an open system.

(
∂V
∂T

)
P,q,n

= −
(
∂S
∂P

)
T,q,n

(
∂V
∂q

)
P,T,n

=
(
∂E
∂P

)
T,q,n

(
∂S
∂q

)
P,T,n

= −
(
∂E
∂T

)
P,q,n(

∂V
∂n

)
P,T,q

=
(
∂µ
∂P

)
T,q,n

(
∂S
∂n

)
P,T,q

= −
(
∂µ
∂T

)
P,q,n

(
∂E
∂n

)
P,T,q

=
(
∂µ
∂q

)
P,T,n
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Exercise 4
a) We would normally write the enthalpy as a function of P and S, which gives the total differential

dH =
(
∂H

∂P

)
S

dP +
(
∂H

∂S

)
P

dS, with
(
∂H

∂P

)
S

= V and
(
∂H

∂S

)
P

= T,

the latter equations following from the characteristic equation for the enthalpy: dH = TdS+V dP .
Now we consider H = H(P, T ), which leads to the total differential

dH =
(
∂H

∂P

)
T

dP +
(
∂H

∂T

)
P

dT.

If you find this peculiar, you might want to read appendix A of the study guide.

b) We take the partial derivative of the result of a) with respect to T at constant V :(
∂H

∂T

)
V

=
(
∂H

∂P

)
T

(
∂P

∂T

)
V

+
(
∂H

∂T

)
P

.

N.B.:
(
∂H
∂P

)
T

and
(
∂H
∂T

)
P

are coefficients in the total differential of H(P, T ), and can therefore be
considered as parameters when determining the derivative

(
∂H
∂T

)
V

.

c) First of all we recognize(
∂H

∂T

)
P

= CP .

We use the following relations for exact differentials of state functions (Atkins: Appendix 2.6 (ed.
8) c.q. page 91-31 (ed. 9) c.q. page 109 till 111 (ed. 10) c.q. page 44 (ed. 11)):(

∂x

∂y

)
z

= 1(
∂y
∂x

)
z

and

(
∂x

∂y

)
z

= −
(
∂x

∂z

)
y

(
∂z

∂y

)
x

,

implying(
∂H

∂P

)
T

= −
(
∂H

∂T

)
P

(
∂T

∂P

)
H

= −µCP

and (
∂P

∂T

)
V

= −
(
∂P

∂V

)
T

(
∂V

∂T

)
P

= −
(
∂V
∂T

)
P(

∂V
∂P

)
T

= V α

V κT
= α

κT
.

When we combine these results we find(
∂H

∂T

)
V

=
(

1− αµ

κT

)
CP .
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