Answers Tutorials 2 Thermodynamics 2, 2023/2024

Exercise 5

We assume that the vapour behaves as a perfect gas, and that the enthalpy of vaporization is independent of the temperature in the pressure interval. With these assumptions the Clausius-Clapeyron equation becomes:

$$
\begin{aligned}
& P=P^{*} \exp (-\chi) \quad \text { with } \quad \chi=\frac{\Delta_{\text {vap }} H}{R}\left(\frac{1}{T}-\frac{1}{T^{*}}\right) \quad \text { which implies } \\
& \ln \frac{P^{*}}{P}=\chi
\end{aligned}
$$

or

$$
\frac{1}{T}=\frac{1}{T^{*}}+\frac{R}{\Delta_{\text {vap }} H} \ln \frac{P^{*}}{P}=\frac{1}{297.25}+\left(\frac{8.314}{28.7 \cdot 10^{3}}\right) \ln \frac{400}{500}=3.30 \cdot 10^{-3} \mathrm{~K}^{-1}
$$

so $T=303 \mathrm{~K}=30^{\circ} \mathrm{C}$.

Exercise 6

The change in freezing point as a result of the higher pressure in the mercury column can be calculated with the Clapeyron equation (use $\Delta_{\text {fus }} G=\Delta_{\text {fus }} H-T_{\text {fus }} \Delta_{\text {fus }} S=0$ for a phase transition (so at $T=T_{\text {fus }}$).

$$
\frac{\mathrm{d} P}{\mathrm{~d} T}=\frac{\Delta_{\mathrm{fus}} S}{\Delta_{\mathrm{fus}} V}=\frac{\Delta_{\mathrm{fus}} H}{T_{\mathrm{fus}} \Delta_{\mathrm{fus}} V}, \quad \text { so } \quad \mathrm{d} P=\frac{\Delta_{\mathrm{fus}} H}{T_{\mathrm{fus}} \Delta_{\mathrm{fus}} V} \mathrm{~d} T \quad \text { and } \quad \int_{P_{1}}^{P_{2}} \mathrm{~d} P=\int_{T_{\mathrm{fus}}}^{T_{\mathrm{fus}, 2}} \frac{\Delta_{\mathrm{fus}} H}{T_{\mathrm{fus}} \Delta_{\mathrm{fus}} V} \mathrm{~d} T
$$

The Clapeyron equation describes the pressure change as a function of the temperature as long as we stay on the phase boundary line, which means that we should actually write $\mathrm{d} P_{\text {fus }}$ and $\mathrm{d} T_{\text {fus }}$ instead of $\mathrm{d} P$ and $\mathrm{d} T$. We assume that for the small temperature change all quantities in the integral (except for $T_{\text {fus }}$ which changes due to the pressure in the mercury column) are constant, which leads to

$$
P_{2}-P_{1}=\frac{\Delta_{\mathrm{fus}} H}{\Delta_{\mathrm{fus}} V} \int_{T_{\mathrm{fus}}}^{T_{\mathrm{fus}, 2}} \frac{\mathrm{~d} T}{T}=\frac{\Delta_{\mathrm{fus}} H}{\Delta_{\mathrm{fus}} V} \ln \frac{T_{\mathrm{fus}, 2}}{T_{\mathrm{fus}}} .
$$

The total pressure difference over the column is $\left(P_{2}-P_{1}\right)=\rho(1) g h$, with h the column height and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$, which results in a change in freezing point at the bottom of the column determined by

$$
\ln \frac{T_{\mathrm{fus}, 2}}{234.3}=\left(P_{2}-P_{1}\right) \frac{\Delta_{\mathrm{fus}} V}{\Delta_{\mathrm{fus}} H}=\rho(\mathrm{l}) g h \frac{\Delta_{\mathrm{fus}} V}{\Delta_{\mathrm{fus}} H}=13.6 \cdot 10^{3} \cdot 9.81 \cdot 10.0 \frac{0.517 \cdot 10^{-6}}{2.292 \cdot 10^{3}}=3.0094 \cdot 10^{-4}
$$

This results in a temperature $T_{\mathrm{fus}, 2}=234.4 \mathrm{~K}$, so an increase of 0.1 K .
The answer therefore is that the bottom of the column just freezes at a temperature of 234.4 K .

Exercise 7

The three phase boundary lines intersect in the triple point. These lines can be found using the following equations between P and T for the phase boundaries in a (P, T)-diagram. $\left((P, T)\right.$ and $\left(P^{*}, T^{*}\right)$ correspond to two points on a phase boundary line):

$$
\begin{aligned}
& P=P^{*}+\frac{\Delta_{\mathrm{fus}} H}{\Delta_{\mathrm{fus}} V} \ln \frac{T}{T^{*}} \quad(\mathrm{~s}-\mathrm{l}) \\
& P=P^{*} \exp (-\chi) ; \quad \chi=\frac{\Delta_{\mathrm{vap}} H}{R}\left(\frac{1}{T}-\frac{1}{T^{*}}\right) \quad(\mathrm{l}-\mathrm{g}) \text { and }
\end{aligned}
$$

$$
P=P^{*} \exp (-\chi) ; \quad \chi=\frac{\Delta_{\text {sub }} H}{R}\left(\frac{1}{T}-\frac{1}{T^{*}}\right) \quad(\mathrm{s}-\mathrm{g})
$$

for which we used the assumption that ΔH and ΔV hardly change in the temperature range around the triple point.
With this assumption we can calculate $\Delta_{\text {sub }} H$ using $\Delta_{\text {sub }} H=\Delta_{\text {fus }} H+\Delta_{\text {vap }} H=10.6+30.8=$ $41.4 \mathrm{~kJ} / \mathrm{mol}$.
$\Delta_{\text {fus }} V$ follows from (benzene $\mathrm{C}_{6} \mathrm{H}_{6}, M\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)=78.11 \mathrm{~g} / \mathrm{mol}$)

$$
\Delta_{\mathrm{fus}} V=\frac{M}{\rho(\mathrm{l})}-\frac{M}{\rho(\mathrm{~s})}=\frac{78.11}{0.879}-\frac{78.11}{0.891}=1.197 \mathrm{~cm}^{3} / \mathrm{mol}
$$

Entering these values we can find the three phase boundary lines $(1$ Torr $=133.322 \mathrm{~Pa})$

$$
\begin{aligned}
& P=P^{*}+\frac{10.6 \cdot 10^{3}}{1.197 \cdot 10^{-6}} \ln \frac{T}{T^{*}}=P^{*}+8.855 \cdot 10^{9}[\mathrm{~Pa}] \ln \frac{T}{T^{*}}=P^{*}+6.64 \cdot 10^{7}[\operatorname{Torr}] \ln \frac{T}{T^{*}} \quad(\mathrm{~s}-\mathrm{l}) \\
& P=P^{*} \exp (-\chi) ; \quad \chi=\frac{30.8 \cdot 10^{3}}{8.314}\left(\frac{1}{T}-\frac{1}{T^{*}}\right)=3705[\mathrm{~K}]\left(\frac{1}{T}-\frac{1}{T^{*}}\right) \quad(\mathrm{l}-\mathrm{g}) \mathrm{en} \\
& P=P^{*} \exp (-\chi) ; \quad \chi=\frac{41.4 \cdot 10^{3}}{8.314}\left(\frac{1}{T}-\frac{1}{T^{*}}\right)=4980[\mathrm{~K}]\left(\frac{1}{T}-\frac{1}{T^{*}}\right) \quad(\mathrm{s}-\mathrm{g})
\end{aligned}
$$

These lines can be found in the figure below as a, b en c, around the triple point of $P^{*}=36$ Torr and $T^{*}=5.50{ }^{\circ} \mathrm{C}$. The boundary line of c for $T>T^{*}$ (dashed line) is metastable, and the same applies to b for $T<T^{*}$.

Exercise 8

a) The suggested Maxwell relation with a term $\left(\frac{\partial V}{\partial T}\right)_{P}=V \alpha$ follows from $\mathrm{d} G=V \mathrm{~d} P-S \mathrm{~d} T$.
G is a state function with independent variables P and T, which means that
$\frac{\partial^{2} G}{\partial T \partial P}=\frac{\partial^{2} G}{\partial P \partial T}$, and therefore $\left(\frac{\partial V}{\partial T}\right)_{P}=-\left(\frac{\partial S}{\partial P}\right)_{T}$.
According to this relation $\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}=-V \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}=-V \alpha$, and therefore $\left.\mathrm{d} S\right|_{T}=$ $-\left.V \alpha \mathrm{~d} P\right|_{T}$.
The volume is $V=\frac{M}{\rho} n=\frac{200}{2 \cdot 10^{3}} \cdot 1=0.1 \mathrm{l}$ for 1 mol .
If we assume that α is independent of the pressure we find (note the units)
$\Delta S=-V \alpha \Delta P=-0.1 \cdot 2 \cdot 10^{-3}(100-1)=-0.02 \mathrm{l} \cdot \mathrm{bar} \cdot \mathrm{K}^{-1}=-0.02 \cdot 10^{2} \mathrm{~m}^{3} \mathrm{~Pa} \cdot \mathrm{~K}^{-1}=-2 \mathrm{~J} \cdot \mathrm{~K}^{-1}$
b) $\Delta U=W+Q=-\int P_{e x t .} \mathrm{d} V+Q \approx Q$ because the volume change is negligible.

In that case the difference between a reversible and an irreversible process is also negligible, and since U is a state function we find:
$\Delta U=Q^{\text {rev }}=T \Delta S=-300 \cdot 2=-0.6 \mathrm{~kJ}$.
c) $\mathrm{d} H=\mathrm{d} U+P \mathrm{~d} V+V \mathrm{~d} P=\mathrm{d} Q+V \mathrm{~d} P$, so
$\Delta H=Q+\int V \mathrm{~d} P \approx Q+V \Delta P$ because the volume change is negligible, so
$\Delta H=-600+0.1 \cdot 10^{-3}(100-1) \cdot 10^{5} \mathrm{~J}=0.4 \mathrm{~kJ}$.
d) $\mathrm{d} A=\mathrm{d} U-T \mathrm{~d} S-S \mathrm{~d} T=-P \mathrm{~d} V-S \mathrm{~d} T$, so
$\Delta A \approx 0$ because it is an isothermal process and the volume change is negligible.
e) $\mathrm{d} G=\mathrm{d} A+P \mathrm{~d} V+V \mathrm{~d} P=-S \mathrm{~d} T+V \mathrm{~d} P$, so
$\Delta G \approx V \Delta P$ because it is an isothermal process and the volume change is negligible.
$\Delta G=0.1 \cdot 10^{-3}(100-1) \cdot 10^{5} \mathrm{~J}=1 \mathrm{~kJ}$.

Exercise 9

a) Since a second order phase transition has $\Delta V=\Delta S=0$ we would find $\frac{\mathrm{d} P}{\mathrm{~d} T}=\frac{0}{0}$ for the Clapeyron equation.
b) The thermal expansion coefficient and the isothermal compressibility are given by

$$
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \quad \text { and } \quad \kappa_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T} .
$$

A change in the volume $V=V(T, P)$ is given by

$$
\mathrm{d} V=\left(\frac{\partial V}{\partial T}\right)_{P} \mathrm{~d} T+\left(\frac{\partial V}{\partial P}\right)_{T} \mathrm{~d} P=\alpha V \mathrm{~d} T-\kappa_{T} V \mathrm{~d} P
$$

This equation applies to both phases (1 and 2). The volume V is a continuous function for a second order phase transition, which implies that along the phase boundary line

$$
\begin{aligned}
& \mathrm{d} V_{1}=\mathrm{d} V_{2}, \quad \text { so } \quad \alpha_{1} \mathrm{~d} T-\kappa_{T, 1} \mathrm{~d} P=\alpha_{2} \mathrm{~d} T-\kappa_{T, 2} \mathrm{~d} P \quad \text { and therefore } \\
& \frac{\mathrm{d} P}{\mathrm{~d} T}=\frac{\alpha_{2}-\alpha_{1}}{\kappa_{T, 2}-\kappa_{T, 1}} .
\end{aligned}
$$

We derive the second Ehrenfest equation from the molar entropy $S_{m}=S_{m}(T, P)$

$$
\mathrm{d} S_{m}=\left(\frac{\partial S_{m}}{\partial T}\right)_{P} \mathrm{~d} T+\left(\frac{\partial S_{m}}{\partial P}\right)_{T} \mathrm{~d} P=\frac{C_{P, m}}{T} \mathrm{~d} T-\alpha V_{m} \mathrm{~d} P
$$

where we used the suggested relation (which applies to any equilibrium situation)

$$
\left(\frac{\partial S_{m}}{\partial T}\right)_{P}=\frac{C_{P, m}}{T}
$$

for the first term and the Maxwell relation derived in exercise 9a for the second term.
The expression for $\mathrm{d} S_{m}$ applies to both phases. Furhtermore, as S_{m} is a continuous function for a second order phase transition, we find

$$
\frac{C_{P, m, 1}}{T} \mathrm{~d} T-\alpha_{1} V_{m} \mathrm{~d} P=\frac{C_{P, m, 2}}{T} \mathrm{~d} T-\alpha_{2} V_{m} \mathrm{~d} P
$$

and therefore

$$
\frac{\mathrm{d} P}{\mathrm{~d} T}=\frac{C_{P, m, 2}-C_{P, m, 1}}{T V_{m}\left(\alpha_{2}-\alpha_{1}\right)} .
$$

