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Exercise 5

We assume that the vapour behaves as a perfect gas, and that the enthalpy of vaporization is independent
of the temperature in the pressure interval. With these assumptions the Clausius-Clapeyron equation
becomes:

P = P ∗ exp (−χ) with χ =
∆vapH

R

(
1

T
− 1

T ∗

)
which implies

ln
P ∗

P
= χ,

or

1

T
=

1

T ∗ +
R

∆vapH
ln
P ∗

P
=

1

297.25
+

(
8.314

28.7 · 103

)
ln

400

500
= 3.30 · 10−3 K−1,

so T = 303 K = 30 ◦C.

Exercise 6

The change in freezing point as a result of the higher pressure in the mercury column can be calculated
with the Clapeyron equation (use ∆fusG = ∆fusH−Tfus∆fusS = 0 for a phase transition (so at T = Tfus)).

dP

dT
=

∆fusS

∆fusV
=

∆fusH

Tfus∆fusV
, so dP =

∆fusH

Tfus∆fusV
dT and

∫ P2

P1

dP =

∫ Tfus,2

Tfus

∆fusH

Tfus∆fusV
dT.

The Clapeyron equation describes the pressure change as a function of the temperature as long as we
stay on the phase boundary line, which means that we should actually write dPfus and dTfus instead of
dP and dT . We assume that for the small temperature change all quantities in the integral (except for
Tfus which changes due to the pressure in the mercury column) are constant, which leads to

P2 − P1 =
∆fusH

∆fusV

∫ Tfus,2

Tfus

dT

T
=

∆fusH

∆fusV
ln
Tfus,2
Tfus

.

The total pressure difference over the column is (P2 − P1) = ρ(l)gh, with h the column height and
g = 9.81 m/s2, which results in a change in freezing point at the bottom of the column determined by

ln
Tfus,2
234.3

= (P2 − P1)
∆fusV

∆fusH
= ρ(l)gh

∆fusV

∆fusH
= 13.6 · 103 · 9.81 · 10.0

0.517 · 10−6

2.292 · 103
= 3.0094 · 10−4.

This results in a temperature Tfus,2 = 234.4 K, so an increase of 0.1 K.
The answer therefore is that the bottom of the column just freezes at a temperature of 234.4 K.

Exercise 7

The three phase boundary lines intersect in the triple point. These lines can be found using the following
equations between P and T for the phase boundaries in a (P, T )-diagram. ((P, T ) and (P ∗, T ∗) correspond
to two points on a phase boundary line):

P = P ∗ +
∆fusH

∆fusV
ln

T

T ∗ (s− l),

P = P ∗ exp (−χ) ; χ =
∆vapH

R

(
1

T
− 1

T ∗

)
(l− g) and

1



P = P ∗ exp (−χ) ; χ =
∆subH

R

(
1

T
− 1

T ∗

)
(s− g),

for which we used the assumption that ∆H and ∆V hardly change in the temperature range around the
triple point.
With this assumption we can calculate ∆subH using ∆subH = ∆fusH + ∆vapH = 10.6 + 30.8 =
41.4 kJ/mol.
∆fusV follows from (benzene C6H6, M(C6H6) = 78.11 g/mol)

∆fusV =
M

ρ(l)
− M

ρ(s)
=

78.11

0.879
− 78.11

0.891
= 1.197 cm3/mol.

Entering these values we can find the three phase boundary lines (1 Torr = 133.322 Pa)

P = P ∗ +
10.6 · 103

1.197 · 10−6
ln

T

T ∗ = P ∗ + 8.855 · 109 [Pa] ln
T

T ∗ = P ∗ + 6.64 · 107 [Torr] ln
T

T ∗ (s− l),

P = P ∗ exp (−χ) ; χ =
30.8 · 103

8.314

(
1

T
− 1

T ∗

)
= 3705 [K]

(
1

T
− 1

T ∗

)
(l− g) en

P = P ∗ exp (−χ) ; χ =
41.4 · 103

8.314

(
1

T
− 1

T ∗

)
= 4980 [K]

(
1

T
− 1

T ∗

)
(s− g).

These lines can be found in the figure below as a, b en c, around the triple point of P ∗ = 36 Torr and
T ∗ = 5.50 ◦C. The boundary line of c for T > T ∗ (dashed line) is metastable , and the same applies to b
for T < T ∗.
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Exercise 8

a) The suggested Maxwell relation with a term
(
∂V
∂T

)
P

= V α follows from
dG = V dP − SdT .
G is a state function with independent variables P and T , which means that
∂2G
∂T∂P = ∂2G

∂P∂T , and therefore
(
∂V
∂T

)
P

= −
(
∂S
∂P

)
T

.

According to this relation
(
∂S
∂P

)
T

= −
(
∂V
∂T

)
P

= −V 1
V

(
∂V
∂T

)
P

= −V α, and therefore dS|T =
−V αdP |T .
The volume is V = M

ρ n = 200
2·103 · 1 = 0.1 l for 1 mol.

If we assume that α is independent of the pressure we find (note the units)
∆S = −V α∆P = −0.1 ·2 ·10−3(100−1) = −0.02 l ·bar ·K−1 = −0.02 ·102 m3Pa ·K−1 = −2 J ·K−1
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b) ∆U = W +Q = −
∫
Pext.dV +Q ≈ Q because the volume change is negligible.

In that case the difference between a reversible and an irreversible process is also negligible, and
since U is a state function we find:
∆U = Qrev = T∆S = −300 · 2 = −0.6 kJ.

c) dH = dU + PdV + V dP = dQ+ V dP , so
∆H = Q+

∫
V dP ≈ Q+ V∆P because the volume change is negligible, so

∆H = −600 + 0.1 · 10−3(100− 1) · 105J = 0.4 kJ.

d) dA = dU − TdS − SdT = −PdV − SdT , so
∆A ≈ 0 because it is an isothermal process and the volume change is negligible.

e) dG = dA+ PdV + V dP = −SdT + V dP , so
∆G ≈ V∆P because it is an isothermal process and the volume change is negligible.
∆G = 0.1 · 10−3(100− 1) · 105J = 1 kJ.

Exercise 9

a) Since a second order phase transition has ∆V = ∆S = 0 we would find dP
dT = 0

0 for the Clapeyron
equation.

b) The thermal expansion coefficient and the isothermal compressibility are given by

α =
1

V

(
∂V

∂T

)
P

and κT = − 1

V

(
∂V

∂P

)
T

.

A change in the volume V = V (T, P ) is given by

dV =

(
∂V

∂T

)
P

dT +

(
∂V

∂P

)
T

dP = αV dT − κTV dP.

This equation applies to both phases (1 and 2). The volume V is a continuous function for a second
order phase transition, which implies that along the phase boundary line

dV1 = dV2, so α1dT − κT,1dP = α2dT − κT,2dP and therefore

dP

dT
=

α2 − α1

κT,2 − κT,1
.

We derive the second Ehrenfest equation from the molar entropy Sm = Sm(T, P )

dSm =

(
∂Sm
∂T

)
P

dT +

(
∂Sm
∂P

)
T

dP =
CP,m
T

dT − αVmdP,

where we used the suggested relation (which applies to any equilibrium situation)(
∂Sm
∂T

)
P

=
CP,m
T

,

for the first term and the Maxwell relation derived in exercise 9a for the second term.
The expression for dSm applies to both phases. Furhtermore, as Sm is a continuous function for a
second order phase transition, we find

CP,m,1
T

dT − α1VmdP =
CP,m,2
T

dT − α2VmdP,

and therefore

dP

dT
=
CP,m,2 − CP,m,1
TVm (α2 − α1)

.
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