Answers Tutorials 3 Thermodynamics 2, 2023/2024

Exercise 10

We consider $m=100 \mathrm{~g}$ of the mixture. The volume of this mixture then follows from the density $\rho=\frac{m}{V}$, so $V=\frac{100}{0.914}=109.4 \mathrm{~cm}^{3}$. Since we have a 50% weight percent mixture, we have 50 g of each component per 100 g .
We can determine the amount of moles of each component using $n_{i}=\frac{m_{i}}{M_{i}}$.
The volume in terms of partial molar volumes V_{i} is

$$
V=V_{a l c} n_{a l c}+V_{w a t e r} n_{w a t e r}=V_{a l c} \frac{m_{\text {alc }}}{M_{\text {alc }}}+V_{\text {water }} \frac{m_{\text {water }}}{M_{\text {water }}}
$$

so

$$
V_{\text {alc }}=\frac{V-V_{\text {water }} \frac{m_{\text {water }}}{M_{\text {water }}}}{\frac{m_{\text {alc }}}{M_{\text {alc }}}}=\frac{109.4-17.4 \frac{50}{18}}{\frac{50}{46}}=56.2 \mathrm{~cm}^{3} / \mathrm{mol} .
$$

Note that we could have used $m \mathrm{~g}$ solution instead of the 100 g , leading to the more general expression

$$
V_{\text {alc }}=\frac{\frac{m}{\rho}-V_{\text {water }} \frac{m_{\text {water }}}{M_{\text {water }}}}{\frac{m_{\text {alc }}}{M_{\text {alc }}}}=\frac{\frac{m}{\rho}-V_{\text {water }} \frac{m}{2 M_{\text {water }}}}{\frac{m}{2 M_{\text {alc }}}}=\frac{2 M_{\text {alc }}}{\rho}-V_{\text {water }} \frac{M_{\text {alc }}}{M_{\text {water }}} .
$$

Exercise 11

a) We label the two compounds A and B . For an ideal mixture (a mixture in which there is no difference between the interactions between A and A, B and B or A and B), the total volume will simply be the sum of the two original volumes. So in terms of the molar volumes $V_{m, A}$ en $V_{m, B}$ we get

$$
V=V_{\text {ideal }}=n_{A} V_{m, A}+n_{B} V_{m, B}, \quad \text { so } \quad V_{A}=\left(\frac{\partial V}{\partial n_{A}}\right)_{T, P, n_{B}}=V_{m, A} \quad \text { and } \quad V_{B}=V_{m, B}
$$

N.B., the partial molar volume $V_{A}=\left(\frac{\partial V}{\partial n_{A}}\right)_{T, P, n_{B}}$ is not to be confused with the molar volume $V_{m, A}=\frac{V^{*}}{n_{A}}$. The latter is defined on the basis of the volume V^{*} of the pure compound A.; only for an ideal solution $V_{A}=V_{m, A}$.
b)

$$
V=V_{i d e a l}+V^{E} \quad \text { with } \quad V_{\text {ideal }}=n_{A} V_{m, A}+n_{B} V_{m, B}
$$

To calculate the partial molar volumes, we first need to translate the molar excess volume to an excess volume according to $V^{E}=n V_{m}^{E}=\left(n_{A}+n_{B}\right) V_{m}^{E}$. If we rewrite V^{E} in terms of n_{A} and n_{B}, we get

$$
\begin{aligned}
& V^{E}=\left(n_{A}+n_{B}\right) V_{m}^{E}=\left(n_{A}+n_{B}\right) \frac{n_{A} n_{B}}{\left(n_{A}+n_{B}\right)^{2}}\left(a_{0}+a_{1} \frac{n_{A}-n_{B}}{n_{A}+n_{B}}\right) \quad \text { so } \\
& V=n_{A} V_{m, A}+n_{B} V_{m, B}+\frac{n_{A} n_{B}}{n_{A}+n_{B}}\left(a_{0}+a_{1} \frac{n_{A}-n_{B}}{n_{A}+n_{B}}\right) .
\end{aligned}
$$

We can find the partial molar volume of propionic acid using

$$
V_{A}=\left(\frac{\partial V}{\partial n_{A}}\right)_{T, P, n_{B}}=V_{m, A}+\frac{a_{0} n_{B}^{2}}{\left(n_{A}+n_{B}\right)^{2}}+\frac{a_{1}\left(3 n_{A}-n_{B}\right) n_{B}^{2}}{\left(n_{A}+n_{B}\right)^{3}}=V_{m, A}+a_{0} x_{B}^{2}+a_{1}\left(3 x_{A}-x_{B}\right) x_{B}^{2}
$$

In the same way we find for V_{B}

$$
V_{B}=V_{m, B}+a_{0} x_{A}^{2}+a_{1}\left(x_{A}-3 x_{B}\right) x_{A}^{2} .
$$

c) In an equimolar solution we have $x_{A}=x_{B}=0.5$. The molar volumes can be calculated using

$$
V_{m, A}=\frac{M_{A}}{\rho_{A}}=\frac{74.08 \mathrm{~g} / \mathrm{mol}}{0.97174 \mathrm{~g} / \mathrm{cm}^{3}}=76.23 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \quad \text { and } \quad V_{m, B}=\frac{86.13 \mathrm{~g} / \mathrm{mol}}{0.86398 \mathrm{~g} / \mathrm{cm}^{3}}=99.69 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

Using these values we obtain

$$
V_{A}=76.23-2.4697 \cdot 0.5^{2}+0.0608 \cdot(3 \cdot 0.5-0.5) \cdot 0.5^{2}=75.63 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \quad \text { and } \quad V_{B}=99.06 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

Exercise 12

We choose $j=A$ for o-xylene and $j=B$ for m-xylene. We use the approximated form (in which $\Delta_{v a p} H$ is considered to be independent of the temperature) of the Clausius-Clapeyron equation to find the vapour pressures of pure A and B at $22^{\circ} \mathrm{C}\left(P^{*}\right.$ and P both represent vapour pressures of pure compounds, but at 90 and $22{ }^{\circ} \mathrm{C}$ respectively)

$$
P=P^{*} \exp (-\chi) \quad \text { where } \quad \chi=\frac{\Delta_{v a p} H}{R}\left(\frac{1}{T}-\frac{1}{T^{*}}\right),
$$

which gives for the pure compounds A and B

$$
\chi_{A}=\frac{36.24 \cdot 10^{3}}{8.314}\left(\frac{1}{295.15}-\frac{1}{363.15}\right)=2.765 \quad \text { resp. } \quad \chi_{B}=\frac{35.66 \cdot 10^{3}}{8.314}\left(\frac{1}{295.15}-\frac{1}{363.15}\right)=2.721,
$$

so we have (${ }^{*}$ now indicates that it is the vapour pressure of a pure compound (at $22{ }^{\circ} \mathrm{C}$), so $P_{A, B}^{*}$ is what we previously called $P_{A, B}$ since the meaning of * has changed)

$$
P_{A}^{*}=18.5 \exp (-2.765)=1.17 \mathrm{kPa} \quad \text { and } \quad P_{B}^{*}=21.9 \exp (-2.721)=1.44 \mathrm{kPa} .
$$

a) An ideal solution follows Raoult's law, $P_{j}=x_{j} P_{j}^{*}$. The total pressure is $P=P_{A}+P_{B}=x_{A} P_{A}^{*}+$ $\left(1-x_{A}\right) P_{B}^{*}$ so $x_{A}=\frac{P-P_{B}^{*}}{P_{A}^{*}-P_{B}^{*}}$. The mixture is boiling when $P=P_{\text {ext }}=1.24 \mathrm{kPa}$ and $T=22^{\circ} \mathrm{C}$.
We find $x_{A}=\frac{1.24-1.44}{1.17-1.44}=0.741$ and $x_{B}=1-x_{A}=0.259$.
b) We will use the the symbol y_{i} for the mole fraction of component i in the vapour.
$y_{A}=\frac{P_{A}}{P_{A}+P_{B}}=\frac{x_{A} P_{A}^{*}}{x_{A} P_{A}^{*}+x_{B} P_{B}^{*}}=\frac{0.741 \cdot 1.17}{0.741 \cdot 1.17+0.259 \cdot 1.44}=\frac{0.8670}{1.240}=0.699$. and $y_{B}=1-y_{A}=0.301$.

Exercise 13

Since we have an ideal-dilute solution, we can use Henry's law for the solute (HCl) and Raoult's law for the solvent (benzene). This means that the vapour pressure of the solute is given by $P_{H C l}=x_{H C l} K_{H C l}$, in which $x_{H C l}$ is the mole fraction of HCl in solution and $K_{H C l}$ is the Henry-constant.
At $P_{H C l}=760 \mathrm{~mm} \mathrm{Hg}$, the mole fraction HCl in benzene is $x_{H C l}=0.040$.
We can us this value to calculate the Henry-constant: $K_{H C l}=\frac{P_{H C l}}{x_{H C l}}=\frac{760}{0.040}=19 \cdot 10^{3} \mathrm{~mm} \mathrm{Hg}=19 \mathrm{~m}$ Hg .
We determine the vapour pressure of b (enzene) for the mixture using Raoult's law. The mole fraction benzene is $x_{b}=1-x_{H C l}$. According to Raoult's law we have $P_{b}=x_{b} P_{b}^{*}=\left(1-x_{H C l}\right) 200 \mathrm{~mm} \mathrm{Hg}$. We have to calculate the mole fraction of HCl if the total vapour pressure is 760 mm Hg ;

$$
P=P_{b}+P_{H C l}=\left(1-x_{H C l}\right) 200+x_{H C l} 19 \cdot 10^{3}=760, \quad \text { so } \quad x_{H C l}=\frac{760-200}{19-0.2} 10^{-3}=0.030
$$

In the figure below you can see the phase diagram and a magnification for $x_{\mathrm{HCl}} \ll 1$, in which H represents Henry's law and the subscript b is used for benzene. The line with label $\mathrm{H}_{\mathrm{HCl}}$ intersects the $x_{\mathrm{HCl}}=1$-axis at $19 \cdot 10^{3} \mathrm{~mm} \mathrm{Hg}$.

