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Exercise 18

a) We use the approximated expression for the freezing point depression (T ∗ = T ∗
fus,A and ∆fusH =

∆fus,AH)

∆T ≈ RT ∗2

∆fusH
xB .

The slopes in the (T, x)-phase diagram are therefore

∆T

xB
=

RT ∗2

∆fusH
=

8.314 · 544.52

10.88 · 103
= 227 K when A is bismuth and

∆T

xB
=

RT ∗2

∆fusH
=

8.314 · 5942

6.07 · 103
= 483 K when A is cadmium.

Then we determine Tfus(xB) = T ∗
fus − ∆T (xB) = T ∗

fus − RT ∗2
fus

∆fusH xB for both metals. This results

in two straight lines in the phase diagram. The approximate eutectic point can be found at the
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intersection of those two lines, so from

T ∗
fus,Bi −

RT ∗2
fus,Bi

∆fus,BiH
xCd = T ∗

fus,Cd −
RT ∗2

fus,Cd

∆fus,CdH
xBi = T ∗

fus,Cd −
RT ∗2

fus,Cd

∆fus,CdH
(1 − xCd) , so

xCd =
T ∗

fus,Cd − T ∗
fus,Bi − RT ∗2

fus,Cd

∆fus,CdH

− RT ∗2
fus,Bi

∆fus,BiH − RT ∗2
fus,Cd

∆fus,CdH

=
594 − 544.5 − 483.3

−226.6 − 483.3
= 0.61

At this composition the fusion temperature is

Tfus = T ∗
fus,Bi −

RT ∗2
fus,Bi

∆fus,BiH
xCd = 406 K.

So the approximated eutectic point is at TE ≈ 406 K and xE(Cd) ≈ 0.61.
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b) The cooling path is indicated by the line abcde in the left diagram. On cooling from point a, at
point b (Tb = 476 K) the liquid phase is divided in solid Bi and a liquid phase richer in Cd. At
point d (Td = 406 K) we have Bi(s) together with the liquid phase with composition x(Cd) = 0.61
and therefore x(Bi) = 0.39. Upon further cooling, the remaining liquid will form two separate solid
phases of Bi and Cd.

c) For point c at 460 K and x(Bi)= 0.70, so x(Cd)= 0.30 the system has two phases, a solid Bi phase
and a liquid solution (melt). The composition of the solution can be found using the freezing point
depression expression, inverted

xCd =
∆fus,BiH

RT ∗2
fus,Bi

∆T =
∆fus,BiH

RT ∗2
fus,Bi

(Tfus,Bi − 460) = 0.37.

The relative amounts of these phases can be found using the lever rule

nl

ns
=

ls
ll

=
0.30 − 0

0.37 − 0.30
≈ 4.3.

In other words, 10/53 of the total amount in the mixture is pure solid Bi and 43/53 of the total
amount consists of a liquid phase with a mole fraction xCd ≈ 0.37 .
At 375 K (point e) there is no liquid, only solids and the system consists of pure Bi(s) and pure
Cd(s). The relative amounts are therefore nBi(s)/nCd(s) = 0.7/0.3 ≈ 2.3

d) The cooling curve can be found next to the phase diagram.

Exercise 19

a) The solubility of a compound is reached when on adding an increasing amount of solute to the
solution, the solute no longer dissolves. This means that solid (non-dissolved solute) is in equilibrium
with the solute in the saturated solution. Thus the solubility of B in A is determined by the
equilibrium between pure B(s) and B dissolved in A. For an ideal solution of B in A we can use

µB(l) = µ∗
B(l) + RT lnxB ,

in which µB(l) is the chemical potential of B in solution. In an equilibrium we have µB(l) =
µB(s) = µ∗

B(s), so

µ∗
B(s) = µ∗

B(l) + RT lnxB .

Since only chemical potentials of pure compounds appear in this expression, we can rewrite it in
terms of the molar Gibbs free energy ∆fusG∗

m,B(T ); we will drop the subscript m in the following,
although it is implicitly present. The same holds for the superscript ∗.

lnxB =
µ∗

B(s) − µ∗
B(l)

RT
= −∆fusGB(T )

RT
= −∆fusHB(T )

RT
+
∆fusSB(T )

R
= −∆fusHB

RT
+
∆fusSB

R
,

where we use the assumption that ∆fusHB and ∆fusSB are independent of T in the last step.
Note that the enthalpy and entropy changes refer to the solute B, in contrast to the case of freezing
point depression and boiling point elevation, for which the solvent A was in the expressions.

b) If we plot lnxB as a function of 1/T we find, given the assumption that, ∆fusH and ∆fusS are
independent of the temperature, a straight line with slope -∆fusH/R and intercept ∆fusS/R, at
1/T = 0. We could also simply use the values for xB and T in this equation and solve the system
of two linear equations. In either way this results in
∆fusHB = 17.35 kJ/mol and
∆fusSB = 28.3 J/molK.
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c) The expression for the chemical potential of component i in a non-ideal solution is

µi = µ∗
i + RT ln ai,

in which we take the pure compound as a reference. We therefore find for a saturated solution in
contact with the solid of solute B(s)

µ∗
B(s) = µ∗

B(l) + RT ln aB .

Similar to part a) we find

ln aB = ln γBxB = ln γB + lnxB = −∆fusHB

RT
+

∆fusSB

R
, or

lnxB = −∆fusHB

RT
+

∆fusSB

R
− ln γB .

d) Substituting the values results in

ln γB = − 18.5 · 103

8.314 · 318.5
+

35.0

8.314
− ln 0.0429 = −6.986 + 4.210 + 3.149 = 0.373 so γ = 1.45.

Exercise 20

a) S and R enantiomers have the same physical properties like boiling point, enthalpy of vaporization
and vapour pressure. In a binary mixture, both the liquidus and vaporous will be the same horizontal
line in an l-g phase diagram, in a (P, x) as well as in a (T, x) diagram. As a consequence, the mole
fractions of the enantiomers will be the same in both phases (yR = xR and yS = xS).

b) If the solid phase forms a conglomerate, we find an l-s diagram with a similar shape as the one of
exercise 18, be it with the same melting point on both sides. Also the liquidus will now be (mirror)
symmetrical in x = 1

2 . As a consequence, we will find the eutectic point at xR = xS = 1
2 . The

phase diagram can be found in figure 1.

c) For a racemate there are three solid phases, the two pure enantiomers, SL and SR, as well as a solid
phase with a 1-1 ratio of both enantiomers, SLR. A phase diagram with all the phase information
can be found in figure 2. In the non-shaded area only the liquid phase (melt) is present, and in
each of the shaded areas there are two phases. Cooling the melt with a composition left of the left
eutectic point (xR < xL

E) will, once the liquidus is passed, result in a pure solid SL in contact with
a liquid, which becomes richer in R. Upon further cooling, as soon as the eutectic temperature at
T = TE is passed, the remaining liquid will form both crystals of SL and SRL. A similar situation
occurs for compositions at the right side of the right eutectic pointxR > xR

E .
When cooling a liquid mixture with initial composition xL

E < xR < 0.5 the solid SLR together with
a liquid mixture poorer in R is formed, as soon as the liquidus is passed. Further cooling results
for T < TE in solid SL and solid SRL. A similar situation occurs for 0.5 < xR < xR

E .
For xR = 0.5 only solid SRL is formed on passing the top of the liquidus.

d) The discussion in part c) shows that pure solid SL can only be obtained for cooling a melt with
composition xR < xL

E and cooling not further than TE, while pure solid SR can only be obtained
by cooling a melt with composition xR > xR

E and cooling not further than TE.

Exercise 21

a) We will chose o-xylene as component A and m-xylene as component B. At T = 90 ◦C, P ∗
A =

18.5 kPa is and P ∗
B = 21.9 kPa. The liquid solution behaves ideal so Raoult’s law can be applied;

P = PA + PB = xAP ∗
A + (1 − xA)P

∗
B , which gives a straight liquidus (upper curve) in figure 3. We
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Figure 1: The phase diagram of a conglomerate.
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Figure 2: The phase diagram of a racemate.
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have derived the total vapour pressure of yA for such a solution as P =
P ∗

AP ∗
B

P ∗
A+(P ∗

B−P ∗
A)yA

, which gives

the curved line (lower curve) in the diagram. At a pressure of P = 20.2 kPa (horizontal line) we
find that zA = xA = 0.5 and zA = yA = 0.458 (as we have seen in exercise 15).
In the entire diagram we have two components, so C = 2 in Gibbs’ phase rule. Above the
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Figure 3: The binary pressure composition diagram of exercise 15.

liquidus and below the vapourus we find the liquid and vapour respectively. We thus have P = 1,
and therefore F = C − P + 2 = 3 in these regions. We have already chosen the temperature
(T = 90 ◦C), so we have two remaining variables, P and zA, which we can freely chose (F ′ = 2).
In the region between the two lines, both vapour and liquid are present. At a given pressure P
the correponding horizontal line intersects the liquidus and vapourus. At these intersections the
vapour and liquid are in equilibrium. The ratio between the amount of vapour and liquid can be
found using the lever rule. In this area we have P = 2, and therefore F = 2. The temperature
was already chosen, so upon choosing the pressure the composition of the vapour and liquid are
determined and vice-versa (F ′ = 1).

b) The point X describes a mixture with composition (xA, xB , xC) = (0.36, 0.48, 0.17); the sum of
these mole fractions is indeed almost 1, the deviation being due to rounding errors That this is
valid for the whole plot can be seen without mathematical prove. Examine the three segments
parallel to the borders of the diagram that run from point X to the edge of the diagram; these
are the bold segments in the left part of figure 4. The length of the segments are xA, xB and xC

respectively. Construct an equilateral triangle with the corresponding edge for each of the segments.
You can find these in the left part of figure 4 looking at the combinations of a bold and bold dashed
line. If you slide all three triangles to one edge, you can see that the sum of the lengths of the
triangles is equal to the length of the edge of the diagram. The length of each of the triangles is
the same as the length of the bold segments (since it is an equilateral triangle). Each edge has a
length of 1, so for all X: xA + xB + xC = 1.

c) Compare your answer to part d) of exercise 15. There are three components in the whole diagram
(with the exception of the edges), so for Gibbs’ phase rule we have C = 3 and F = 5− P . We have
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Figure 4: The ternary pressure composition diagram of exercise 15.

already chosen the pressure and temperature, which reduces the amount of variables to F ′′ = 3−P ,
which implies F ′′ = 2 for the liquid and the vapour phase regions, and F ′′ = 1 for the region where
the two are in equilibrium.

d) We started with a binary mixture (A and B) in exercise 15a. At the given pressure and temperature,
the mole fractions turned out to be xA = xB = 0.5, which is indicated in the right part of figure 4. In
exercise 15c, a third component C was added to the binary mixture. This means that in the ternary
phase diagram we get a composition somewhere on the line between (xA, xB , xC) = (0.5, 0.5, 0) and
(xA, xB , xC) = (0, 0, 1). The last value corresponds to an infinite amount of C added. Somewhere
on this line we find point (xA, xB , xC) = (0.0618, 0.0618, 0.8765) which we found in exercise 15e.
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