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Exercise 22

a) We use the Kelvin equation for the vapour pressure of a droplet with radius r

P = P ∗ exp

(
2γVm

rRT

)
.

The molar volume is

Vm =
M

ρ
=

18.02 gmol−1

0.9982 gcm−3 = 1.805 · 10−5 m3mol−1,

so

2γVm

rRT
=

2 · 72.75 · 10−3 Nm−1 · 1.805 · 10−5 m3mol−1

10 · 10−9 m · 8.314 JK−1mol−1 · 293 K
= 0.1078,

which gives

P = 2.3kPa · exp (0.1078) = 2.6 kPa.

b) If we neglect the contact angle, since it is very small, we can assume that the curvature of the
meniscus is that of a semi circle (in fact a semi sphere) with as radius that of the capillary. The
hydrostatic pressure ρgh is equal to the difference in pressure 2γ

r due to the curvature of the
meniscus, so we can find the height using

h =
2γ

ρgr
=

2 · 72.75 · 10−3 Nm−1

0.9982 · 103 kgm−3 · 9.807 ms−2 · 1
2 · 0.300 · 10−3 m

= 9.91 · 10−2 m = 9.91 cm.

c)

yH2O =
PH2O

P
=

PH2O

P sat
H2O

P sat
H2O

P
= RH

P sat
H2O

P
= 0.5

2330

105
= 0.0117.

d) Tc is the critical temperature of water. When T ≥ Tc, the liquid and vapour phase cannot be
distinguished from one another. This means there is no meniscus anymore, so γ(T = Tc) = 0. If
T > Tc, the equation cannot be used anymore.

e) At RH = 100 % we can use the expression for the equilibrium surface tension.

ρgh =
2γ

r
so h =

2

ρgr
γ =

2

0.9982 · 103 · 9.81 · 0.15 · 10−3
γ = 1.36γ = 0.207

(
1 − T

Tc

) 11
9

.

This results in a height difference of

∆h = h(363 K) − h(293 K) = 0.207

[(
1 − 363

647

) 11
9

−
(
1 − 293

647

) 11
9

]
= −0.023 m.

An increasing temperature results in a lower surface tension, which decreases the height h of the
column, found in part b.
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Exercise 23

a) The chemical potential of a pure compound is equal to the molar Gibbs free energy, so

µ(T, P ) = Gm(T, P ) = Hm(T, P ) − TSm(T, P ).

At constant pressure P = 1 bar = P⊖ this becomes

µ⊖(T ) = G⊖
m(T ) = H⊖

m(T ) − TS⊖
m(T ).

We can find the boiling point Tb using the equilibrium condition µ⊖
l (Tb) = µ⊖

g (Tb), implying

H⊖
m,l(Tb) − TbS⊖

m,l(Tb) = H⊖
m,g(Tb) − TbS⊖

m,g(Tb) so Tb =
H⊖

m,g(Tb) − H⊖
m,l(Tb)

S⊖
m,g(Tb) − S⊖

m,l(Tb)
.

If we assume that the numerator and denominator are independent of the temperature (which is
a less strict assumption than that all the terms are independent of the temperature), and use the
given values for the enthalpies and entropies of formation we find

Tb =
H⊖

m,g − H⊖
m,l

S⊖
m,g − S⊖

m,l

≈
∆f H⊖

m,g(298 K) − ∆f H⊖
m,l(298 K)

S⊖
m,g(298 K) − S⊖

m,l(298 K)
=

(−241.82 − (−285.83)) · 103

188.83 − 69.9
= 370.05 K.

This value is not too far off from the usual 100 ◦C. Our assumptions seem reasonable, even though
we used the relatively low reference temperature of 298 K.

b) ∆Gbulk is the gain in energy of a (bulk) droplet compared to the same material in the supercooled
vapour, so

∆Gbulk = nl (µl − µg) =
Vdroplet

Vm
(µl − µg) =

4π

3Vm
r3 (µl − µg) ,

in which nl is the amount (mole) in the droplet and Vm the molar volume of water. The contribution
∆Gbulk is negative for T < Tb, so the vapour tends to condense spontaneously. This tendency is
counteracted by the (positive) surface tension equal to

∆Gsurf = 4πr2γ.

The total Gibbs free energy of a droplet is therefore

∆Gcond(r) =
4π

3Vm
r3 (µl − µg) + 4πr2γ.

In figure 1 it can be seen that ∆Gcond(r) has a maximum at r = rc. Droplets with a radius r < rc

will evaporate; if r > rc a droplet will grow towards a bulk liquid phase. Droplets with r = rc are
in a quasi-stationary equilibrium.

c) The maximum of ∆Gcond(r) at critical radius r = rc follows from

0 =
d∆Gcond

dr
=

4πr2

Vm
(µl − µg) + 8πγr so rc =

2γVm

µg − µl
.

The denominator is 0 at the boiling point (T = Tb) , which results in a critical radius of rc(Tb) = ∞,
while for an arbitrary temperature (and given pressure P = P⊖)

µg − µl =
(
H⊖

m,g − TS⊖
m,g

)
−
(

H⊖
m,l − TS⊖

m,l

)
=
(

H⊖
m,g − H⊖

m,l

)
− T

(
S⊖

m,g − S⊖
m,l

)
, so

rc =
2γVm(

H⊖
m,g − H⊖

m,l

)
− T

(
S⊖

m,g − S⊖
m,l

)
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Figure 1: ∆Gbulk(r) = −Ar3 (·-·), ∆Gsurf (r) = Br2 (- -) and ∆Gcond(r) = −Ar3 + Br2 (—)

If we define the supercooling as ∆T = Tb − T , so T = Tb − ∆T , in which Tb is the temperature at
which the bulk liquid and the vapour phase are in equilibrium (implying µg − µl = 0, so ∆G(Tb) =
∆H − Tb∆S = (Hm,g − Hm,l) − Tb(Sm,g − Sm,l) = 0) we find

rc(∆T ) =
2γVm

(H⊖
m,g − H⊖

m,l) − (Tb − ∆T )(S⊖
m,g − S⊖

m,l)
=

2γVm

∆T (S⊖
m,g − S⊖

m,l)
.

d) The molecular volume is Vm

NA
, so the critical radius has the size of a molecule when 4π

3 r3c ≈ Vm

NA
, so

4π

3

(
2γVm

∆Tcrit(S
⊖
m,g − S⊖

m,l)

)3

≈ Vm

NA
,

which we can rewrite to

∆Tcrit = Tb − Tcrit =
2γVm

S⊖
m,g − S⊖

m,l

(
3Vm

4πNA

)− 1
3

.

If we insert the known values we get

∆Tcrit =
2 · 58 · 10−3 · 18.8 · 10−6

188.83 − 69.91

(
3 · 18.8 · 10−6

4π · 6.02 · 1023

)− 1
3

= 1.83 · 10−8 · 5.12 · 109 = 93.7 K.

e) For ∆T → 0 it follows that rc → ∞, which implies that only an infinitly large volume of water
(without a curved surface), has the same boiling point as Tb. Since every (seed of) a droplet has
some curvature, it will immediately evaporate. Only seeds with a radius equal or larger than rc will
grow to a full-sized droplet. The larger the supercooling, the smaller the critical radius becomes.
For ∆T → ∆Tcrit the supercooling is so large that it compensates the surface tension of a droplet
of the size of a molecule. This is however not realistic since the γ of such small ’droplets’ of a single
molecule will be significantly different from the γ of finite sized droplets. ∆Tcrit does give a good
approximation of how large the supercooling needs to be to form droplets without heterogeneous
nucleation sources (like dust particles). The value we found would suggest that pure water vapour
could be supercooled to values almost reaching the melting point of ice (Tb−∆Tcrit = 370.05−93.7 =
276 K).

Exercise 24

The reaction is

HgCl2(s) ⇋ Hg2+(aq) + 2Cl−(aq).
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The equilibrium constant is defined as

K = Πia
νi
i .

We can assume that the activity is equal to the molality for a poorly soluble salt (and we use aHgCl2(s)
≈ 1):

K =
aHg2+(aq)a

2
Cl−(aq)

aHgCl2(s)
≈ aHg2+(aq)a

2
Cl−(aq) ≈

bHg2+

b⊖

(
bCl−

b⊖

)2

.

The relation between the solubility, s, and the molalities is bCl− = 2bHg2+ = 2s, so

K =
4s3

(b⊖)3
, therefore s =

(
1

4
K

) 1
3

b⊖.

K follows from RT lnK = −∆rG⊖, in which

∆rG⊖ = ∆f G⊖(Hg2+, aq)+2∆f G⊖(Cl−, aq)−∆f G⊖(HgCl2, s) = 164.40−2·131.23+178.6 = 80.54 kJ/mol.

From this result the equilibrium constant follows:

lnK =
−80.54 · 103

8.314 · 298.15
= −32.49, so K = 7.758 · 10−15,

and therefore

s = 1.25 · 10−5 mol/kg,

which indeed corresponds to a very dilute solution.

Exercise 25

a) The electrical work is given by dWe = Edq, in which E is the potential difference over which the
charge dq is transfered. This results in the following relation for the Gibbs free energy (at constant
pressure)

dG = −SdT + V dP + dWe = −SdT + Edq.

From this characteristic equation the following Maxwell relation can be derived(
∂E

∂T

)
q,P

= −
(

∂S

∂q

)
T,P

.

b) The overall reaction is

AgCl(s) +
1

2
H2(g) ⇋ Ag(s) + Cl−(aq) + H+(aq)

The standard potential of a standard hydrogen electrode is, per definition, E⊖(Pt|H2(g)|H+(aq)) = 0 V
for any T . The standard conditions for this expression are P = P⊖ = 1 bar and aH+ = 1. Realize
that the choice to set the standard potential of the standard hydrogen electrode to zero for all
temperatures, does not mean that the standard potential of other electrodes are also independent
of the temperature.
Because of that choice for E⊖(Pt|H2(g)|H+(aq)), only the Ag/AgCl/Cl− electrode determines the
temperature dependence for this cell. Under standard conditions we thus find for the standard
potential (t [◦C] = T − 273.15 [K] so ∂/∂T = ∂/∂t):(

∂E⊖

∂T

)
q,P

=

(
∂E⊖(Ag/AgCl/Cl

−
)

∂T

)
q,P

= −4.8564·10−4−2·3.4205·10−6t+3·5.869·10−9t2 [V/K].
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At t = 25 ◦C we find E⊖ = 0.2224 V and
(

∂E⊖

∂T

)
q,P

= −6.457 · 10−4 V/K.

Per mole we have a charge transfer of −NAe = −F = −96485 C/mol so (P = P⊖)

∆rG = ∆rG⊖ = −νFE⊖ = −1 · 96485 · 0.2224 = −21458 J/mol

and using the Maxwell relation we find for the reaction entropy

∆rS = ∆rS⊖ = −
(

∂E⊖

∂T

)
q,P

∆q = −(−6.457 · 10−4) · (−96485) = −62.30 J/molK,

so

∆rH = ∆rH⊖ = ∆rG⊖ + T∆rS⊖ = −21458 + 298.15 · (−62.30) J/mol = −40.03 kJ/mol.

c) E⊖(Pt|H2(g)|H+(aq)) = 0 per definition for any T , implying for the half reaction
1
2H2(g) ⇋ H+(aq) + e− (with P = P⊖, so aH2(g) = 1)

E(Pt|H2(g)|H+(aq)) = E⊖ − RT

νF
lnQ = 0 − RT

1 · F
ln

aH+

aH2(g)
1/2

= −RT

F
ln aH+ .

For the other half reaction AgCl(s) + e− ⇋ Ag(s) + Cl−(aq) (with aAgCl(s) = aAg(s) = 1) we find
at T = 323.2 K (50 ◦C) E⊖(AgCl/Ag, Cl−(aq)) = 0.2045 V, so

E(AgCl/Ag,Cl
−
(aq)) = E⊖ − RT

νF
lnQ = 0.2045 − 8.314 · 323.2

1 · 96485
ln aCl− .

For the total cell without added KCl we take the sum of the two half cell potentials

E = 0.2045 − 8.314 · 323.2

96485
ln aCl− − 8.314 · 323.2

96485
ln aH+ = 0.2045 − 8.314 · 323.2

96485
ln aCl−aH+ .

For the total cell with added KCl we find analogously

E′ = 0.2045 − 8.314 · 323.2

96485
ln a′

Cl−a′
H+ .

The change in the product of the activities follows with

0.200 = ∆E = E′ − E = −8.314 · 323.2

96485
ln a′

Cl−a′
H+ +

8.314 · 323.2

96485
ln aCl−aH+ ,

so

a′
Cl−a′

H+

aCl−aH+

= exp

[
−0.200

96485

8.314 · 323.2

]
= exp [−7.18] = 7.6 · 10−4.
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