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Exercise 26

I =
1

2

∑
i

z2i

(
bi
b�

)
= IKCl + IFeCl3 .

For a dissolved salt MpXq with molality b the molalities of the ions are (b+/b
�) = p(b/b�) and (b−/b

�) =
q(b/b�), so we get

I =
1

2

[
(+1)2

bK+

b�
+ (−1)2

bCl−

b�

]
+

1

2

[
(+3)2

bFe3+

b�
+ (−1)2 · 3bCl−

b�

]
.

Using the given molalities results in (b� = 1 mol/kg)

I =
1

2
[0.20 + 0.20] +

1

2
[9 · 0.10 + 3 · 0.10] = 0.20 + 0.60 = 0.80.

The largest contribution thus comes from the FeCl3, which has a lower molality but larger charges.

Exercise 27

a) Dissolving 1 mol of AgCl(s) results in 1 mol Ag+ and 1 mol Cl− in the solution, so bAg+ = bCl− = s,
where s is the solubility. The equiulibrium constant is given by

K =
aAg+aCl−

aAgCl(s)
= aAg+aCl− = γ±

(
bAg+

b�

)
γ±

(
bCl−

b�

)
= γ2±

( s

b�

)2
.

The ionic strength of the solution is

I =
1

2

[
(+1)2

bAg+

b�
+ (−1)2

bCl−

b�

]
=

s

b�
= 1.274 · 10−5.

The Debye-Hückel limiting law results in (A = 0.509 at 298.15 K)

log γ± = −|z+z−|A
√
I = −0.509 ·

√
1.274 · 10−5 = −1.82 ·10−3, which gives γ± = 0.996, so

K = 0.9962 · (1.274 · 10−5)2 = 1.61 · 10−10.

b) For a solution with only 0.00200 mol/kg K2SO4 the ionic strength is

I =
1

2

[
(+1)2 · 2 · 0.00200 + (−2)2 · 0.00200

]
= 0.00600.

c) The ionic strength of K2SO4 in this solution is way bigger than that of AgCl, which means we can
neglect the latter for now (Note, that z+ and z− in the Debye-Hückel limiting law, still refer to
Ag+ and Cl−, respectively).

log γ± = −|z+z−|A
√
I = −0.509 ·

√
0.00600 = −0.0394, so γ± = 0.9132.

d) The equilibrium constant is independent of the composition of the solution because

RT lnK = −∆rG
�

and the symbol � refers to the standard state for which all components of the reaction (AgCl(s),
Ag+(aq) and Cl−(aq)) are in a (virtual) pure state.
Therefore, we can still use the result for K from part a). The activity coefficient, however, now has
the value found in part c), so we find

s

b�
=

√
K

γ±
=

√
1.61 · 10−10

0.9132
= 1.39 · 10−5, so s = 1.39 · 10−5 mol/kg

1



e) Using the equilibrium constant of part a) and the new solubility from part d) we find:

I = IK2SO4
+ IAgCl = 0.00600 + 1.39 · 10−5 = 0.00601, so γ± = 0.9131, which gives

s

b�
=

√
K

γ±
= 1.394 · 10−5, which shows that our approximation was very reasonable.

Exercise 28

The chemical equation for the dissolution of a 1:1 salt MX is

MX(s)� M+(aq) + X−(aq)

Due to the low concentration of a poorly soluble salt we can approximate the mean activity constant of
the ions (γ2± = γM+γX−) using the Debye-Hückel limiting law:

log γ± = −|z+z−|AI
1
2 ,

in which z+ = |z−| = 1, A = 0.509 and the ionic strength of the solution is I = 1
2

∑
i z

2
i
bi
b�

=
1
2

(
bM+

b�
+

bX−
b�

)
.

For a 1:1 salt we have bM+ = bX− = s [mol/kg], so I = s/b� and

ln γ± =
10 log γ±
10 log e

= 2.303 log γ± = −2.303·0.509

√
s

b�
= −1.172

√
s

b�
, so γ± = exp

(
−1.172

√
s

b�

)
.

The equilibrium constant is therefore (aMX(s) ≈ 1; b� = 1 mol/kg)

Ks =
aM+aX−

aMX(s)
= aM+aX− = γM+

bM+

b�
γX−

bX−

b�
= γ2±

bM+

b�
bX−

b�
=
(γ±s
b�

)2
,

which results in

s =

√
Ks

γ±
b� =

√
Ks exp

(
1.172

√
s

b�

)
b�.

Exercise 29

For two energy states the partition function is

q =
∑
i

exp [−βεi] = exp [−βε0] + exp [−βε1] = exp [−β · 0] + exp [−βε1] = 1 + exp [−βε1] .

We could translate the question to ’at what temperature is the following equation valid’:

p1 ≡
n1
N

=
exp (−βε1)

q
=

exp (−βε1)

1 + exp (−βε1)
= 0.10,

or

10 exp (−βε1) = 1 + exp (−βε1) ,

or

exp (−βε1) =
1

9
, and β =

1

kT
= − 1

ε1
ln

(
1

9

)
, and T =

ε1
k ln (9)

.

We can calculate ε1 using ε1 = hcν, with ν = 540 cm−1 so

T =
hcv

k ln (9)
= 352.6 K.
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Exercise 30

a) Since we set our lowest energy level to 0, also in a magnetic field, both energy levels are raised by
1
2µBB, so ε0 = 0 and ε1 = µBB.

q =
∑
i

exp
(
− εi
kT

)
= 1 + exp

(
−µBB

kT

)
b) The Boltzmann distribution gives

ni = N
exp

(
− εi
kT

)
q

(i = 0, 1),

so

n0 = N
1

1 + exp
(
−µBB

kT

) and n1 = N
exp

(
−µBB

kT

)
1 + exp

(
−µBB

kT

)
In figure 1, n0

N and n1

N are plotted for a magnetic field of B = 10 Tesla We can see that occupancy
of both levels for T → ∞ goes to 0.5, and that all spins are in the ground state (n0(T = 0) = N
and n1(T = 0) = 0) for T → 0 We can also see that the occupancy of the two states are n0

N = 0.731
and n1

N = 0.269 if kT = µBB (dotted line in the figure).
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Figure 1: n0

N and n1

N for B = 10 Tesla

c) The average energy per electron due to the magnetic field is

< ε >=
1

N

∑
i

εini =
1

N
(ε0n0 + ε1n1) =

1

N

0 · n0 + µBBN
exp

(
−µBB

kT

)
1 + exp

(
−µBB

kT

)


We have to correct for our earlier shift of + 1
2µBB, however, resulting in

< ε >= µBB
exp

(
−µBB

kT

)
1 + exp

(
−µBB

kT

) − 1

2
µBB.

The plot of < ε > has the same shape as the lower line in the graph (apart from the shift of − 1
2µBB)

The effect of the magnetic field thus disappears for T → ∞, because < ε >→ 0 (for a finite value
of the magnetic field).
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d) Before the 180◦ pulse we have

n1
n0

=
n1
N

N

n0
=

exp(−βµBB)

q

q

1
= exp(−βµBB),

The distribution after the pulse is inverted, so we have(
n1
n0

)′
=
n0
n1

= [exp(−β′µBB)]
−1

= exp(+βµBB)

which means β′ = −β, corresponding to a negative temperature! This is a system out of equilib-
rium, which in time will spontaneously return to the original distribution, that is, to the equilibrium
state with the positive temperature.
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