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Exercise 1

a) There are always three translational degrees of freedom (x, y, z) per molecule in three dimensions.
Since CO2 is a linear molecule, there are two axes of rotation,so two degrees of rotational freedom
per molecule. For this gas of N molecules we thus have NT = 3N and NR = 2N .

b) Each CO2-molecule consists of three atoms with each three (translational) degrees of freedom, which
gives us a total of nine degrees of freedom per molecule. For N molecules we thus have N tot = 9N .

c) N tot consists of NT , NR and the contribution of vibrational modes NV , therefore NV = N tot −
NT − NR = 9N − 3N − 2N = 4N . N.b., For a translation of the entire molecule the movements
of the three atoms are equal. For the two rotational modes, the oxygen atoms rotate around the
carbon atom. For one of the vibrational modes, the oxygen atoms move opposite of each other
along the axis of the molecule. For the other vibrational modes, the movements are somewhat more
complex.

d) The internal energy is 1
2kT per degree of freedom according to the equipartition theorem. The

rotational and translational modes have one degree of freedom and the vibrational modes have two
(kinetic and potential energy).
U =

(
NT +NR + 2NV

)
1
2kT = (3N + 2N + 2 · 4N) 1

2kT = 13
2 NkT for the entire gas or 13

2 RT =
13
2 8.314 · 1000 = 54.04 kJmol−1.

e) H = U + PV , which for a perfect gas, using the equation of state, implies H = U + nRT , which
means that the molar enthalpy equals H = 15

2 RT = 15
2 · 8.314 · 1000 = 62.36 kJmol−1.

N.b the PV -term is not affected by the rotations and vibrations at the high temperatures of the
equipartition theorem because their (quantum mechanical) energy levels are independent of V , as
opposed to the translations. Therefore PV = nRT remains valid.

f) cV =
(
∂U
∂T

)
V

= 13
2 R = 54.04 Jmol−1K−1, independent of the temperature! This only applies to a

perfect gas.

g) cP =
(
∂H
∂T

)
P
= 15

2 R = 62.36 Jmol−1K−1, independent of the temperature! This only applies to a
perfect gas, so for high enough temperature and (still) low pressure.
Atkins’ table 2B.1 (ed. 11 or 12) gives cP (CO2) = 44.22+8.79·10−3T−8.62·105T−2 Jmol−1K−1. At
a temperature of T = 2000 K that would give a value of cP (CO2, 2000K) = 44.22+8.79·2−8.62/40 =
61.58 Jmol−1K−1, which is smaller then the result of the equipartition theorem. cP as function of
temperature is plotted in the figure below (from the boiling point of 195 K) for both the equipartition
value and data from Atkins; for the latter we silently (and certainly falsely) assumed that Atkins’
expression is valid for the entire temperature range of the plot.
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Exercise 2

g(x, y) = ln
(
xy2

)
− x2y3.

a) g(x, y) is a state function if

∂2g

∂x∂y
=

∂2g

∂y∂x

Checking this gives

∂2g

∂x∂y
=

∂

∂x

(
∂g

∂y
|x
)
|y =

∂

∂x

(
1

xy2
2xy − 3x2y2

)
|y =

∂

∂x

(
2

y
− 3x2y2

)
|y = −6xy2, and

∂2g

∂y∂x
=

∂

∂y

(
∂g

∂x
|y
)
|x =

∂

∂y

(
∂g

∂x
|y
)
|x =

∂

∂y

(
1

xy2
y2 − 2xy3

)
|x =

∂

∂y

(
1

x
− 2xy3

)
|x = −6xy2

These results are the same, so we are dealing with a state function.

b) The total differential of g(x, y) is dg(x, y) = gxdx+ gydy, with

gx(x, y) =
∂g

∂x
|y =

1

x
− 2xy3, and gy(x, y) =

∂g

∂y
|x =

2

y
− 3x2y2, so

dg(x, y) =

(
1

x
− 2xy3

)
dx+

(
2

y
− 3x2y2

)
dy.

c) The Maxwell relation between gx(x, y) and gy(x, y) is

∂gx
∂y

|x =
∂gy
∂x

|y, so
∂
(
1
x − 2xy3

)
∂y

|x =
∂
(

2
y − 3x2y2

)
∂x

|y,

which worked out leads to

−6xy2 = −6xy2,

which shows that the Maxwell relation indeed holds.

d) The total differential of g(x, y) is dg(x, y) = gxdx+ gydy.
To determine ∆g between (x, y) = (1, 2) and (x, y) = (4, 3) by integrating g(x, y) first at constant
y and subsequently at constant x we find

∆g =

∫ (4,3)

(1,2)

dg(x, y) =

∫ (4,2)

(1,2)

gx(x, y)dx+

∫ (4,3)

(4,2)

gy(x, y)dy

=

∫ (4,2)

(1,2)

(
1

x
− 2xy3

)
dx+

∫ (4,3)

(4,2)

(
2

y
− 3x2y2

)
dy =

[
ln (x)− x2y3

](4,2)
(1,2)

+
[
2 ln (y)− x2y3

](4,3)
(4,2)

=
(
ln 4− 42 · 23

)
−
(
ln 1− 12 · 23

)
+
(
2 ln 3− 42 · 33

)
−

(
2 ln 2− 42 · 23

)
= (2 ln 2− 128)− (0− 8)) + (2 ln 3− 432)− (2 ln 2− 128) = 2 ln

2 · 3
2

− 324 = 2 ln 3− 324.

The alternative integration path gives

∆g =

∫ (4,3)

(1,2)

dg(x, y) =

∫ (1,3)

(1,2)

gy(x, y)dy +

∫ (4,3)

(1,3)

gx(x, y)dx

=

∫ (1,3))

(1,2)

(
2

y
− 3x2y2

)
dy +

∫ (4,3)

(1,3)

(
1

x
− 2xy3

)
dx =

[
2 ln y − x2y3

](1,3)
(1,2)

+
[
lnx− x2y3

](4,3)
(1,3)

=
(
2 ln 3− 12 · 33

)
−
(
2 ln 2− 12 · 23

)
+

(
ln 4− 42 · 33

)
−

(
ln 1− 12 · 33

)
= 2 ln 3− 324.

This indeed gives the same result, which should be the case for a state function.
NOTE: It is important to note that the partial derivatives gx(x, y) and gy(x, y) are still a function
of both x and y, and their dependencies should be taken into account when integrating, as we did!
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Exercise 3

a) The non-expansion work of the electrical cell is dW ′ = Edq, in which E is the EMF (electromotive
force, or cell potential, or preferably: cell voltage) and dq is the charge transfered.
For the characteristic equations we find
dU = −PdV + TdS + Edq
dH = V dP + TdS + Edq
dA = −PdV − SdT + Edq
dG = V dP − SdT + Edq

b) The first Maxwell-relation in the table below follows from(
∂2U

∂S∂V

)
q

=

(
∂2U

∂V ∂S

)
q

so

(
∂ (−P )

∂S

)
V,q

=

(
∂T

∂V

)
S,q

U
(
∂P
∂S

)
V,q

= −
(
∂T
∂V

)
S,q

(
∂P
∂q

)
V,S

= −
(
∂E
∂V

)
S,q

(
∂T
∂q

)
V,S

=
(
∂E
∂S

)
V,q

H
(
∂V
∂S

)
P,q

=
(
∂T
∂P

)
S,q

(
∂V
∂q

)
P,S

=
(
∂E
∂P

)
S,q

(
∂T
∂q

)
P,S

=
(
∂E
∂S

)
P,q

A
(
∂P
∂T

)
V,q

=
(
∂S
∂V

)
T,q

(
∂P
∂q

)
V,T

= −
(
∂E
∂V

)
T,q

(
∂S
∂q

)
V,T

= −
(
∂E
∂T

)
V,q

G
(
∂V
∂T

)
P,q

= −
(
∂S
∂P

)
T,q

(
∂V
∂q

)
P,T

=
(
∂E
∂P

)
T,q

(
∂S
∂q

)
P,T

= −
(
∂E
∂T

)
P,q

c) For an open system with one type of particle we need an extra term µdn, in which µ is the chemical
potential. For the characteristic equations we find
dU = −PdV + TdS + Edq + µdn
dH = V dP + TdS + Edq + µdn
dA = −PdV − SdT + Edq + µdn
dG = V dP − SdT + Edq + µdn

d) The Maxwell-relations that follow from the equation for the Gibbs free energy can be found in the
following overview. The three in the top row are the same as those in part b), besides being at
constant n. The other three are new relations for an open system.

(
∂V
∂T

)
P,q,n

= −
(
∂S
∂P

)
T,q,n

(
∂V
∂q

)
P,T,n

=
(
∂E
∂P

)
T,q,n

(
∂S
∂q

)
P,T,n

= −
(
∂E
∂T

)
P,q,n(

∂V
∂n

)
P,T,q

=
(

∂µ
∂P

)
T,q,n

(
∂S
∂n

)
P,T,q

= −
(

∂µ
∂T

)
P,q,n

(
∂E
∂n

)
P,T,q

=
(

∂µ
∂q

)
P,T,n

Exercise 4

a) For a perfect gas we found in the lecture and in exercise 1 that the internal energy is given by
U =

(
NT +NR + 2NV

)
1
2kT , where NT , NR and NV are constants depending on the type of

molecules. Therefore, the internal energy depends only on the temperature T and, thus

ΠT =

(
∂U

∂V

)
T

= 0.

b) Using the total differential of U

dU(S, V ) =

(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV,
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we find (note that the partial derivatives in the total differential are coefficients of U(S, V ) and can
therefore be considered as parameters when determining the partial derivative

(
∂U
∂V

)
T
)

ΠT =

(
∂U

∂V

)
T

=

(
∂U

∂S

)
V

(
∂S

∂V

)
T

+

(
∂U

∂V

)
S

(
∂V

∂V

)
T

,

c) The characteristic equation for U is dU(S, V ) = TdS−PdV , so we can replace the partial derivatives
in the total differential of U(S, V ) in part b) by respectively T and −P :

ΠT =

(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− P

(
∂V

∂V

)
T

= T

(
∂S

∂V

)
T

− P.

To get rid of the partial derivative with the entropy S, we use the Maxwell relation (obtained from
the Helmholtz free energy; see also exercise 3b))(

∂S

∂V

)
T

=

(
∂P

∂T

)
V

,

to finally obtain

ΠT =

(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P.

d) Applying this result to a van de Waals gas with equation of state

P =
nRT

V − nb
− n2a

V 2
,

we find

ΠT = T
nR

V − nb
−
(

nRT

V − nb
− n2a

V 2

)
=

n2a

V 2
.

With the value of a = 3.610 atm dm6 mol−2 = 3.610 · 1.01325 · 105 · 10−6 = 0.3658 Pa m6 mol−2

and n = 2 mol, we find ΠT = 22·0.3658
V 2 = 1.463

V 2 Pa.

With the definition of ΠT =
(
∂U
∂V

)
T
we can determine the change in internal energy as a result of

an isothermal compression of the gas:

∆UT =

∫
ΠTdV = n2a

∫ V2

V1

dV

V 2
= −n2a

[
1

V

]V2

V1

= −n2a

(
1

V2
− 1

V1

)
,

which gives on plugging in the values

∆UT = −1.463

(
1

200 · 10−3
− 1

400 · 10−3

)
= −3.66 J.

To give an impression of the deviation from ideal behaviour we calculate the internal energy in case
of a perfact gas behaviour for CO2 (use the result of exercise 1d):

Uperfect gas =
13

2
nRT =

13

2
2 · 8.314 · 2000 = 2.16 · 105 J,

independent of temperature. The relative deviation is −3.66
2.16·105 = −1.7 · 10−5 ≈ −0.02 h, so very

small, even at the rather low final pressure of

P ≈ P perfect gas =
nRT

V
=

2 · 8.314 · 2000
200 · 10−3

= 66 · 103 Pa = 0.66 bar.
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