
Answers Tutorials 2 Thermodynamics 2, 2024/2025

Exercise 5

The corrected phase diagram is shown in the figure below, with the corrections in red. The 5 mistakes
are:
1. P and T have been swapped
2. l and g have been swapped
3. ’sublimation point’ should be ’triple point’
4. the critical point is where the l, g phase boundary line ends
5. the error in the red circle needs clarification. In the red circle four phase boundary lines come together
in a single point. This is not possible according to Gibbs’ phase rule, F = C − P + 2, as four phases
(s3, s4, s5 and l would be mutually in equilibrium, so P = 4, while C = 1 because we are dealing with a
pure compound (with a unary phase diagram). This would result in F = C − P + 2 = 1 − 4 + 2 = −1,
so not allowed; A pure compound cannot have four phases in mutual equilibrium.

Exercise 6

We assume that the vapour behaves as a perfect gas, and that the enthalpy of vaporization is independent
of the temperature in the pressure interval. With these assumptions the Clausius-Clapeyron equation
becomes:

P = P ∗ exp (−χ) with χ =
∆vapH

R

(
1

T
− 1

T ∗

)
which implies

ln
P ∗

P
= χ,

or

1

T
=

1

T ∗ +
R

∆vapH
ln

P ∗

P
=

1

297.25
+

(
8.314

28.7 · 103

)
ln

400

500
= 3.30 · 10−3 K−1,

so T = 303 K = 30 ◦C.
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Exercise 7

The three phase boundary lines intersect in the triple point. These lines can be found using the following
equations between P and T for the phase boundaries in a (P, T )-diagram. ((P, T ) and (P ∗, T ∗) correspond
to two points on a phase boundary line):

P = P ∗ +
∆fusH

∆fusV
ln

T

T ∗ (s− l),

P = P ∗ exp (−χ) ; χ =
∆vapH

R

(
1

T
− 1

T ∗

)
(l− g) and

P = P ∗ exp (−χ) ; χ =
∆subH

R

(
1

T
− 1

T ∗

)
(s− g),

for which we used the assumption that ∆H and ∆V hardly change in the temperature range around the
triple point.
With this assumption we can calculate ∆subH using ∆subH = ∆fusH + ∆vapH = 10.6 + 30.8 =
41.4 kJ/mol.
∆fusV follows from (benzene C6H6, M(C6H6) = 78.11 g/mol)

∆fusV =
M

ρ(l)
− M

ρ(s)
=

78.11

0.879
− 78.11

0.891
= 1.197 cm3/mol.

Entering these values and changing all of them to SI (mksA) units, except for the pressures, which we
leave in Torr (1 Torr = 133.322 Pa), we can find the three phase boundary lines by plugging in the
temperatures in Kelvin. For (T ∗, P ∗) we can choose the triple point values (278.65 K, 36 Torr).

P = P ∗ +
10.6 · 103

1.197 · 10−6
ln

T

T ∗ = P ∗ + 8.855 · 109 [Pa] ln
T

T ∗ = P ∗ + 6.64 · 107 [Torr] ln
T

T ∗ (s− l),

P = P ∗ exp (−χ) ; χ =
30.8 · 103

8.314

(
1

T
− 1

T ∗

)
= 3705 [K]

(
1

T
− 1

T ∗

)
(l− g) en

P = P ∗ exp (−χ) ; χ =
41.4 · 103

8.314

(
1

T
− 1

T ∗

)
= 4980 [K]

(
1

T
− 1

T ∗

)
(s− g).

The three lines can be found in the figure below as a, b en c, around the triple point of P ∗ = 36 Torr
(4.800 kPa) and T ∗ = 5.50 ◦C (278.65 K). The boundary line of c for T > T ∗ (dashed line) is metastable,
and the same applies to b for T < T ∗.
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Exercise 8

The change in freezing point as a result of the higher pressure in the mercury column can be calculated
with the Clapeyron equation (use ∆fusG = ∆fusH−Tfus∆fusS = 0 for a phase transition (so at T = Tfus)).

dP

dT
=

∆fusS

∆fusV
=

∆fusH

Tfus∆fusV
, so dP =

∆fusH

Tfus∆fusV
dT and

∫ P2

P1

dP =

∫ Tfus,2

Tfus

∆fusH

Tfus∆fusV
dT.

The Clapeyron equation describes the pressure change as a function of the temperature as long as we
stay on the phase boundary line, which means that we should actually write dPfus and dTfus instead of
dP and dT . We assume that for the small temperature change all quantities in the integral (except for
Tfus which changes due to the pressure in the mercury column) are constant, which leads to

P2 − P1 =
∆fusH

∆fusV

∫ Tfus,2

Tfus

dT

T
=

∆fusH

∆fusV
ln

Tfus,2

Tfus
.

The total pressure difference over the column is ∆P = (P2 − P1) = ρ(l)g∆h, with ∆h the column height
and g = 9.81 m/s2, which results in a change in freezing point at the bottom of the column determined
by

ln
Tfus,2

234.3
= (P2 − P1)

∆fusV

∆fusH
= ρ(l)g∆h

∆fusV

∆fusH
= 13.6 · 103 · 9.81 · 10.00.517 · 10

−6

2.292 · 103
= 3.0094 · 10−4.

This results in a temperature Tfus,2 = 234.4 K, so an increase of 0.1 K.
The answer therefore is that the bottom of the column just freezes at a temperature of 234.4 K.

Exercise 9

a) The suggested Maxwell relation with a term
(
∂V
∂T

)
P
= V α follows from

dG = V dP − SdT .
G is a state function with independent variables P and T , which means that
∂2G
∂T∂P = ∂2G

∂P∂T , and therefore
(
∂V
∂T

)
P
= −

(
∂S
∂P

)
T
.

According to this relation
(
∂S
∂P

)
T

= −
(
∂V
∂T

)
P

= −V 1
V

(
∂V
∂T

)
P

= −V α, and therefore dS|T =
−V αdP |T .
The volume is V = M

ρ n = 200
2·103 · 1 = 0.1 l for 1 mol.

If we assume that α is independent of the pressure we find (note the units)
∆S = −V α∆P = −0.1 ·2 ·10−3(100−1) = −0.02 l ·bar ·K−1 = −0.02 ·102 m3Pa ·K−1 = −2 J ·K−1

b) ∆U = W +Q = −
∫
Pext.dV +Q ≈ Q because the volume change is negligible.

In that case the difference between a reversible and an irreversible process is also negligible, and
since U is a state function we find:
∆U = Qrev = T∆S = −300 · 2 = −0.6 kJ.

c) dH = dU + PdV + V dP = dQ+ V dP , so
∆H = Q+

∫
V dP ≈ Q+ V∆P because the volume change is negligible, so

∆H = −600 + 0.1 · 10−3(100− 1) · 105J = 0.4 kJ.

d) dA = dU − TdS − SdT = −PdV − SdT , so
∆A ≈ 0 because it is an isothermal process and the volume change is negligible.

e) dG = dA+ PdV + V dP = −SdT + V dP , so
∆G ≈ V∆P because it is an isothermal process and the volume change is negligible.
∆G = 0.1 · 10−3(100− 1) · 105J = 1 kJ.
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