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Exercise 10

We consider m = 100 g of the mixture. The volume of this mixture then follows from the density ρ = m
V ,

so V = 100
0.914 = 109.4 cm3. Since we have a 50% weight percent mixture, we have 50 g of each component

per 100 g.
We can determine the amount of moles of each component using ni =

mi

Mi
.

The volume in terms of partial molar volumes Vi is

V = Valcnalc + Vwaternwater = Valc
malc

Malc
+ Vwater

mwater

Mwater
.

so

Valc =
V − Vwater

mwater

Mwater

malc

Malc

=
109.4− 17.4 50

18
50
46

= 56.2 cm3/mol.

Note that we could have used m g solution instead of the 100 g, leading to the more general expression

Valc =

m
ρ − Vwater

mwater

Mwater

malc

Malc

=

m
ρ − Vwater

m
2Mwater

m
2Malc

=
2Malc

ρ
− Vwater

Malc

Mwater
.

Exercise 11

a) An ideal solution follows Raoult’s law, Pj = xjP
∗
j . We choose j = A for o-xylene and j = B

for p-xylene. We use the approximated form (in which ∆vapH is considered to be independent of
the temperature) of the Clausius-Clapeyron equation to find the vapour pressures of pure A and
B at 70 ◦C (P ∗ and P both represent vapour pressures of pure compounds, but at 90 and 70 ◦C
respectively)

P = P ∗ exp(−χ) where χ =
∆vapH

R

(
1

T
− 1

T ∗

)
,

which gives for the pure compounds A and B

χA =
40.9 · 103

8.314

(
1

343.15
− 1

363.15

)
= 0.790 resp. χB =

39.2 · 103

8.314

(
1

343.15
− 1

363.15

)
= 0.757,

so we have (∗ now indicates that it is the vapour pressure of a pure compound (at 70 ◦C), so P ∗
A,B

is what we previously called PA,B since the meaning of ∗ has changed)

P ∗
A = 18.5 exp(−0.790) = 8.40 kPa and P ∗

B = 22.7 exp(−0.757) = 10.65 kPa.

At 70 ◦C we still have an ideal solution follows Raoult’s law, with Pj = xjP
∗
j .

The total pressure is P = PA + PB = xAP
∗
A + (1− xA)P

∗
B , so xA =

P−P∗
B

P∗
A−P∗

B
.

The mixture is boiling when P = Pext = 9.00 kPa and T = 70 ◦C, so we find
xA = 9.00−10.65

8.40−10.65 = 0.733 and xB = 1− xA = 0.267.

b) We will use the the symbol yi for the mole fraction of component i in the vapour.

yA = PA

PA+PB
=

xAP∗
A

xAP∗
A+xBP∗

B
= 0.733·8.40

0.733·8.40+0.267·10.65 = 0.684. and yB = 1− yA = 0.316.

c) Pj = xjP
∗
j with j = A,B,C. The total pressure remains the sum of the partial pressures, P =

PA + PB + PC , and the sum of the mole fractions remains xA + xB + xC = 1.
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d) F = C − P + 2 with C = 3. P = 2 for an equilibrium between a liquid- and vapour mixture, so
F = 3. At a given pressure and temperature we are left with F ′′ = 1 (in part a) this was F ′′ = 0.
This means we can still choose one of the variables, e.g. xA. This suggests that we could construct
an xA, xB diagram (P and T have already been chosen and xC follows from xA + xB + xC = 1) in
which the mixture boils for the points on a line. Since we however chose to add m-xylene to the
mixture with the composition found in a) (for which the relative amounts nA and nB were already
fixed), we have also no free variables left; F ′′ = 0.

e) We simplify the ternary mixture to a binary mixture by treating a mixture of components A and
B as one ’component’ D. p-xylene (C) is then the second component (actually the third). From
question a) we already know the vapour pressure of ’compound’ D, P ∗

D(70◦C) = 9.00 kPa.
For the ternary mixture boiling at 70 ◦C and 9.5 kPa we can therefore write

P = PC+PD = xCP
∗
C+(1−xC)P

∗
D so xC =

P−P∗
D

P∗
C−P∗

D
= 9.5−9.0

10.1−9.0 = 0.4545 and xD = 1−xC = 0.5455.

For the vapour we find yC = PC

P =
xCP∗

C

P = 0.4545·10.1
9.5 = 0.4832 so yD = 1− yC = 0.5168.

What remains is to calculate xA, xB , yA and yB from xC , xD, yC en yD.
We use xD = xA + xB and yD = yA + yB .
Because P = PA + PB + PC we can use Raoult:
P = xAP

∗
A + xBP

∗
B + (1− xA − xB)P

∗
C = xA(P

∗
A − P ∗

C) + xB(P
∗
B − P ∗

C) + P ∗
C , so (still at 70◦C)

xA = −xB
P∗

B−P∗
C

P∗
A−P∗

C
+

P−P∗
C

P∗
A−P∗

C
= − 10.65−10.1

8.40−10.1 xB + 9.5−10.1
8.4−10.1 = 0.3235xB + 0.3529.

If we combine the last expression with xA + xB = xD = 0.5455 we find
0.3235xB + 0.3529 + xB = 0.5455, so
xB = 0.5455−0.3529

1.3235 = 0.1455 and
xA = 1− xC − xB = 1− 0.4545− 0.1455 = 0.4000.
For the vapour we find yA =

xAP∗
A

P = 0.4000·8.40
9.5 = 0.3537 and yB = xBPB∗

P = 0.1455·10.65
9.5 = 0.1631.

Check:
∑

yi = yA + yB + yC = 0.3537 + 0.1631 + 0.4832 = 1.

Exercise 12

a)

G = Gideal +GE = nAµ
∗
A(l) + nBµ

∗
B(l) + nRT [x lnx+ (1− x) ln(1− x)] + nβRTx(1− x),

In the lecture we found for an ideal solution

∆mixG
ideal = nRT (xA lnxA + xB lnxB) ,

which can be written as (use x ≡ xA = 1− xB)

∆mixG
ideal = nRT [x lnx+ (1− x) ln(1− x)] .

Before mixing we have the pure liquids, so

Gno mix = nAµ
∗
A(l) + nBµ

∗
B(l).

Therefore

Gideal = nAµ
∗
A(l) + nBµ

∗
B(l) + nRT [x lnx+ (1− x) ln(1− x)] ,

GE = nRT [βx(1− x)] ,

∆mixG = nRT [x lnx+ (1− x) ln(1− x) + βx(1− x)] ,

∆mixG
ideal = nRT [x lnx+ (1− x) ln(1− x)] .
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b) Although not asked for we will show how GA has been determined.
The partial molar Gibbs free energy of component i is defined as

Gi ≡
(
∂G

∂ni

)
T,P,nj ̸=i

, so GA ≡
(

∂G

∂nA

)
T,P,nB

,

and an analogous expression for GB . Therefore, we first rewrite G(x) to G(nA, nB) (use xi ≡ ni/n)

G = nAµ
∗
A(l) + nBµ

∗
B(l) +RT

[
nA ln

nA

nA + nB
+ nB ln

nB

nA + nB

]
+RTβ

nAnB

nA + nB
.

Differentiation with respect to nA leads to

GA = µ∗
A(l)+

+RT

[
ln

nA

nA + nB
+ nA

nA + nB

nA

(
1

nA + nB
− nA

(nA + nB)
2

)
+ nB

nA + nB

nB
· −nB

(nA + nB)
2

]

+RTβ

[
nB

nA + nB
− nAnB

(nA + nB)
2

]
,

which simplifies in a two steps to first

GA = µ∗
A(l)+RT

[
ln

nA

nA + nB
+ (nA + nB)

(
nB

(nA + nB)
2

)
− nB

nA + nB

]
+RTβ

[
n2
B

(nA + nB)
2

]
,

and finally

GA = µ∗
A(l) +RT ln

nA

nA + nB
+RTβ

n2
B

(nA + nB)
2 .

Using this result for GA we can find the expression for GB , as suggested, in two ways

1. The general expression we found in the lecture

G|T,P =
∑
i

niGi = nAGA + nBGB , so GB =
G|T,P − nAGA

nB
.

This gives (use G written as G(nA, nA) in b))

GB =
nAµ

∗
A(l) + nBµ

∗
B(l) +RT

[
nA ln nA

nA+nB
+ nB ln nB

nA+nB

]
+RTβ nAnB

nA+nB

nB

−
nAµ

∗
A(l)− nART ln nA

nA+nB
− nARTβ

[
n2
B

(nA+nB)2

]
nB

= µ∗
B(l) +RT ln

nB

nA + nB
+RTβ

n2
A

(nA + nB)
2 .

2. G is symmetric in exchanging x and (1− x). To find GB we can therefore simply swap the
subscripts A and B in the expression of problem b):

GB = µ∗
B(l) +RT ln

nB

nA + nB
+RTβ

n2
A

(nA + nB)
2 .
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Exercise 13

Since we have an ideal-dilute solution, we can use Henry’s law for the solute (HCl) and Raoult’s law for
the solvent (benzene). This means that the vapour pressure of the solute is given by PHCl = xHClKHCl,
in which xHCl is the mole fraction of HCl in solution and KHCl is the Henry-constant.
At PHCl = 760 mm Hg, the mole fraction HCl in benzene is xHCl = 0.040.
We can us this value to calculate the Henry-constant: KHCl =

PHCl

xHCl
= 760

0.040 = 19 · 103 mm Hg = 19 m
Hg.
We determine the vapour pressure of b(enzene) for the mixture using Raoult’s law. The mole fraction
benzene is xb = 1− xHCl. According to Raoult’s law we have Pb = xbP

∗
b = (1− xHCl)200 mm Hg.

We have to calculate the mole fraction of HCl if the total vapour pressure is 760 mm Hg;

P = Pb + PHCl = (1− xHCl)200 + xHCl19 · 103 = 760, so xHCl =
760− 200

19− 0.2
10−3 = 0.030.

In the figure below you can see the phase diagram and a magnification for xHCl << 1, in which H
represents Henry’s law and the subscript b is used for benzene. The line with label HHCl intersects the
xHCl = 1-axis at 19 · 103 mm Hg.
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