
Answers Tutorials 4 Thermodynamics 2, 2024/2025

Exercise 14

Pure nitrogen has a boiling point of 77.3 K at 1 atm. The corresponding boiling point of oxygen is
90.2 K. All the values in the table of the exercise are therefore between the boiling points of the two
components. The first two rows, indicated by x and y, represent the composition of the liquid mixture
and the composition of the corresponding vapour mixture, respectively at different temperatures and a
total pressure of 100 kPa. The last row gives the vapour pressure of pure (liquid) oxygen at the indicated
temperatures.

a) We can simply use the data from the table to construct the temperature-composition diagram; see
figure below. If the combination of the (total) composition and temperature lies between the two
lines (the grey area), both phases are present. The mole fractions of the liquid phase can be found
on the bottom curve (liquidus). In the same way, the mole fractions of the vapour can be found
using the upper curve. 760 Torr = the pressure of a column Hg of 760 mm height, which is equal
to 1 atm = 101325 Pa.
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b) The activity aA of O2 can be found using PA = aAP
∗
A = γAxAP

∗
A. We perform the calculation at

80 K as an example:

γO2(80 K) =
PA

xAP ∗
A

=
yAP

xAP ∗
A

=
0.11 · 100 [kPa]

0.34 · 225 [Torr]

(
760 [Torr]

101.325 [kPa]

)
= 1.079.

The results can be found in the table below. The solution seems to behave almost ideal for the

T [K] 77.3 78 80 82 84 86 88 90.2
γO2

- 0.877 1.079 1.039 0.995 0.993 0.990 0.987

majority of the measured points (γ ≈ 1), except for the questionable point at 78 K. This would be
best visible in a (P, xA) plot (at constant T ), since we should get a straight line with slope P ∗

A, for
an ideal solution according to Raoult’s law.

Exercise 15

a) The answer is no, no, yes, yes, yes.
The argument is that you cannot have a local minimum or local maximum for the gas line without
it touching there the liquidus, as this would lead to g-g separation or l-l separation, which is at
least very unlikely. (see slide 37 of Lecture 4).
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b) The values from the table can be found in the figure below. The hatched (grey) region is the
two-phase region.

c) The lower curve, which represents the boiling point, has a value of T = 391.0K at x = 0.300.

d) The mole fractions of 1-butanol are x = 0.1700 and y = 0.3691 for the liquid and vapour phase
respectively, according to the table.
So

nl,but

nl,Clbenz
= x

1−x = 0.1700
0.8300 = 0.20 and

ng,but

ng,Clbenz
= y

1−y = 0.3691
0.6309 = 0.5850.

Using the lever rule we find the relative amounts of the two phases

nl

ng
=

lg
ll

=
0.3691− 0.300

0.300− 0.1700
= 0.532.

Exercise 16

a) The solubility of a compound is reached when on adding an increasing amount of solute to the
solution, the solute no longer dissolves. This means that solid (non-dissolved solute) is in equilibrium
with the solute in the saturated solution. Thus the solubility of B in A is determined by the
equilibrium between pure B(s) and B dissolved in A. For an ideal solution of B in A we can use

µB(l) = µ∗
B(l) +RT lnxB ,

in which µB(l) is the chemical potential of B in solution. In an equilibrium we have µB(l) =
µB(s) = µ∗

B(s), so

µ∗
B(s) = µ∗

B(l) +RT lnxB .

Since only chemical potentials of pure compounds appear in this expression, we can rewrite it in
terms of the molar Gibbs free energy ∆fusG

∗
m,B(T ); we will drop the subscript m in the following,

although it is implicitly present. The same holds for the superscript ∗.

lnxB =
µ∗
B(s)− µ∗

B(l)

RT
= −∆fusGB(T )

RT
= −∆fusHB(T )

RT
+
∆fusSB(T )

R
= −∆fusHB

RT
+
∆fusSB

R
,

where we use the assumption that ∆fusHB and ∆fusSB are independent of T in the last step.
Note that the enthalpy and entropy changes refer to the solute B, in contrast to the case of freezing
point depression and boiling point elevation, for which the solvent A was in the expressions.

b) If we plot lnxB as a function of 1/T we find, given the assumption that, ∆fusH and ∆fusS are
independent of the temperature, a straight line with slope -∆fusH/R and intercept ∆fusS/R, at
1/T = 0. We could also simply use the values for xB and T in this equation and solve the system
of two linear equations. In either way this results in
∆fusHB = 17.35 kJ/mol and
∆fusSB = 28.3 J/molK.
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c) The expression for the chemical potential of component i in a non-ideal solution is

µi = µ∗
i +RT ln ai,

in which we take the pure compound as a reference. We therefore find for a saturated solution in
contact with the solid of solute B(s)

µ∗
B(s) = µ∗

B(l) +RT ln aB .

Similar to part a) we find

ln aB = ln γBxB = ln γB + lnxB = −∆fusHB

RT
+

∆fusSB

R
, or

lnxB = −∆fusHB

RT
+

∆fusSB

R
− ln γB .

d) Substituting the values results in

ln γB = − 18.5 · 103

8.314 · 318.5
+

35.0

8.314
− ln 0.0429 = −6.986 + 4.210 + 3.149 = 0.373 so γ = 1.45.

Exercise 17

G = Gideal +GE = nAµ
∗
A(l) + nBµ

∗
B(l) + nRT [x lnx+ (1− x) ln(1− x) + βx(1− x)] ,

a) We can find the extrema using

0 =
∂∆mixG

∂x
= nRT

[
lnx+

x

x
− ln(1− x)− 1− x

1− x
+ β(1− 2x)

]
= nRT [lnx− ln(1− x) + β(1− 2x)] .

We cannot solve this equation analytically. We can however set the second derivative to zero, since
if there is one extremum ∆mixG must have zero inflection points and if there are three extrema the
function must have two inflection points.

0 =
∂2∆mixG

∂x2
= nRT

[
1

x
+

1

1− x
− 2β

]
so x(1− x)− 1

2β
= 0 so x =

1

2
± 1

2

√
1− 2

β
.

The implies that if β < 2 there are no solutions, so no inflection points.
If β > 2 there are two solutions (inflection points).
If β = 2 we have x = 1

2 , which means that ∆mixG(β) as a function of β changes from having one
minimum at x = 1

2 to a maximum at the same value of x, while the minima (for β > 2) slide
symmetrically outward.

b) In figure 1 the minima of ∆mixG as a function of x have been plotted vs. T .
If β = 2 we have T = b

2k .

If β < 2, so T > b
2k there is only one minimum for ∆mixG(β) ( x = 1

2 ). For any value of x the
mixture will have one liquid phase.
If β > 2, so T < b

2k there are two minima for ∆mixG. They have the same value for ∆mixG because
the function is symmetrical around x = 1

2 .
For a total composition outside of the two minima, it will always be unfavorable to reach one
minimum by separating into two phases. This is because the increase in ∆mixG for the second
phase will be higher than the decrease for the first one, due to the slope being lower near the
minima. The total ∆mixG would increase upon demixing, so this will not happen.
For a mixture of total composition between the two minima (grey area in the plot) however, both
minima will be reached upon forming two phases (one rich in A and poor in B, the other rich in B
and poor in A). This lowers the total ∆mixG, which makes the phase separation favourable.
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Gibbs’ phase rule is F = C − P + 2. C = 2 for a binary system, and since we have already chosen
a pressure we are left with F ′ = 2− P + 1 = 3− P . For T > b

2k , we have P = 1, so F ′ = 2 which

means we can vary both T and x. For T < b
2k and the total composition lying between the two

minima, we have P = 2, so F ′ = 1. This means that for any value of T , the mole fractions of
the two phases are fixed. We than have two phases of which the composition can be found by the
boundary of the grey area (at the given temperature). The quantities of each of the phases can be
found using the lever rule.
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Figure 1: The T − x phase diagram with the bell shaped area in which we have l-l demixing.

c) Setting the second derivative equal to zero (x = 1
2 ±

1
2

√
1− 2

β ) for negative values of β results in a

value of x > 1 or x < 0, which is not possible for a mole fraction, implying that there is no inflection
point and there is always just one minimum at x = 1

2 .

The Gibbs free energy is GE = nRTβxAxB . In the case of β = b/kT this becomes GE = nbR
k xAxB .

When we compare this expression with the definition of the Gibbs free energy, G = H − TS, we
can interpret the excess Gibbs free energy as an excess enthalpy. A mixture for which HE ̸= 0 and
SE = 0 is called a regular solution.
If we however interpret β as temperature independent, the excess term becomes an excess entropy
term with SE = nRβxAxB . Such a mixture is generally referred to as an athermal solution, for
which HE = 0 and SE ̸= 0. A negative value for β in an athermal solution implies a larger value
for the entropy than the entropy of ideal mixing, which only deepens the minimum of ∆mixG at
x = 1

2 , while a positive value will bring the value closer to zero like we have seen in the exercise.
The latter could for instance occur due to clustering of components A and B in a mixture. An
increase of the entropy can only occur by an increase in the molar volume of the components in a
mixture, through which furthermore the vibrations and rotations of the components increase, which
also increases the entropy. Here we run into a problem however for an athermal solution; since an
increase in the molar volume suggests that the interactions between A and B become smaller, so
the enthalpy will become smaller, implying HE ̸= 0. In other words, real solutions will never be
pure regular or pure athermal solutions, as both HE and SE will differ from zero and β will always
be somewhat temperature dependent. Purely regular or purely athermal solutions are therefore
not easily realizable, and should be considered theoretical limits (models) of mixtures. We call a
solution in which both SE ̸= 0 and HE ̸= 0 either a quasi-regular solution or a general solution.
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