
Answers Tutorials 5 Thermodynamics 2, 2024/2025

Exercise 18

a) We use the approximated expression for the freezing point depression (T ∗ = T ∗
fus,A and ∆fusH =

∆fus,AH)

∆T ≈ RT ∗2

∆fusH
xB .

The slopes in the (T, x)-phase diagram are therefore

∆T

xB
=

RT ∗2

∆fusH
=

8.314 · 544.52

10.88 · 103
= 227 K when A is bismuth and

∆T

xB
=

RT ∗2

∆fusH
=

8.314 · 5942

6.07 · 103
= 483 K when A is cadmium.

Then we determine Tfus(xB) = T ∗
fus −∆T (xB) = T ∗

fus −
RT∗2

fus

∆fusH
xB for both metals. This results

in two straight lines in the phase diagram. The approximate eutectic point can be found at the
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intersection of those two lines, so from

T ∗
fus,Bi −

RT ∗2
fus,Bi

∆fus,BiH
xCd = T ∗

fus,Cd −
RT ∗2

fus,Cd

∆fus,CdH
xBi = T ∗

fus,Cd −
RT ∗2

fus,Cd

∆fus,CdH
(1− xCd) , so

xCd =
T ∗
fus,Cd − T ∗

fus,Bi −
RT∗2

fus,Cd

∆fus,CdH

− RT∗2
fus,Bi

∆fus,BiH
− RT∗2

fus,Cd

∆fus,CdH

=
594− 544.5− 483.3

−226.6− 483.3
= 0.61

At this composition the fusion temperature is

Tfus = T ∗
fus,Bi −

RT ∗2
fus,Bi

∆fus,BiH
xCd = 406 K.

So the approximated eutectic point is at TE ≈ 406 K and xE(Cd) ≈ 0.61.
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b) The cooling path is indicated by the line abcde in the left diagram. On cooling from point a, at
point b (Tb = 476 K) the liquid phase is divided in solid Bi and a liquid phase richer in Cd. At
point d (Td = 406 K) we have Bi(s) together with the liquid phase with composition x(Cd) = 0.61
and therefore x(Bi) = 0.39. Upon further cooling, the remaining liquid will form two separate solid
phases of Bi and Cd.

c) For point c at 460 K and x(Bi)= 0.70, so x(Cd)= 0.30 the system has two phases, a solid Bi phase
and a liquid solution (melt). The composition of the solution can be found using the freezing point
depression expression, inverted

xCd =
∆fus,BiH

RT ∗2
fus,Bi

∆T =
∆fus,BiH

RT ∗2
fus,Bi

(Tfus,Bi − 460) = 0.37.

The relative amounts of these phases can be found using the lever rule

nl

ns
=

ls
ll

=
0.30− 0

0.37− 0.30
≈ 4.3, so n = nl + ns = 5.3ns.

Therefore, 10/53 of the total amount n in the system is pure solid Bi and 43/53 of the total amount
in the system consists of a liquid phase with a mole fraction xCd.
At 375 K (point e) there is no liquid, only solids and the system consists of pure Bi(s) and pure
Cd(s). The relative amounts are therefore nBi(s)/nCd(s) = 0.7/0.3 ≈ 2.3

d) The cooling curve can be found next to the phase diagram.

Exercise 19

a) S and R enantiomers have the same physical properties like boiling point, enthalpy of vaporization
and vapour pressure. In a binary mixture, both the liquidus and vaporous will be the same horizontal
line in an l-g phase diagram, in a (P, x) as well as in a (T, x) diagram. As a consequence, the mole
fractions of the enantiomers will be the same in both phases (yR = xR and yS = xS).

b) If the solid phase forms a racemic conglomerate, we find an l-s diagram with a similar shape as
the one of exercise 18, be it not approximated by the linear melting curves, and more importantly
with the same melting point on both sides. Also the liquidus will now be (mirror) symmetrical in
x = 1

2 . As a consequence, we will find the eutectic point at xR = xS = 1
2 . The phase diagram can

be found in figure 1.

c) For a racemic compound there are three solid phases, the two pure enantiomers, SL and SR, as
well as a solid phase with a 1-1 ratio of both enantiomers, SLR. A phase diagram with all the
phase information can be found in figure 2. In the non-shaded area only the liquid phase (melt) is
present, and in each of the shaded areas there are two phases. Cooling the melt with a composition
left of the left eutectic point (xR < xL

E) will, once the liquidus is passed, result in a pure solid SL

in contact with a liquid, which becomes richer in R. Upon further cooling, as soon as the eutectic
temperature at T = TE is passed, the remaining liquid will form both crystals of SL and SRL. A
similar situation occurs for compositions at the right side of the right eutectic pointxR > xR

E .
When cooling a liquid mixture with initial composition xL

E < xR < 0.5 the solid SLR together with
a liquid mixture poorer in R is formed, as soon as the liquidus is passed. Further cooling results
for T < TE in solid SL and solid SRL. A similar situation occurs for 0.5 < xR < xR

E .
For xR = 0.5 only solid SRL is formed on passing the top of the liquidus.

d) The discussion in part c) shows that pure solid SL can only be obtained for cooling a melt with
composition xR < xL

E and cooling not further than TE, while pure solid SR can only be obtained
by cooling a melt with composition xR > xR

E and cooling not further than TE.
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Figure 1: The phase diagram of a racemic conglomerate; the two-phase regions are hatched.
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Figure 2: The phase diagram of a racematic compound.
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Exercise 20

a) The phase diagram shows that the salt hydrate Na2SO4 · nH2O corresponds to approximately
44 wt.% Na2SO4, which melts incongruently at 305.53 K. The molar mass of the salt hydrate is

M(Na2SO4 · nH2O) = M(Na2SO4) + nM(H2O) = 142.04 + n · 18.02 g/mol.

This mass accounts for approximately 44 wt.% Na2SO4, so

44

100
(142.04 + n · 18.02) g/mol ≈ 142.04 g/mol, so n ≈ 0.56 · 142.04

0.44 · 18.02
= 10.03,

Therefore n = 10 and we are dealing with a Na2SO4 · 10H2O salt hydrate.

b) The phase diagram including all phases present is drawn in Figure 3.

Figure 3: Phase diagram of the (Na2SO4, H2O) system including its salt hydrate Na2SO4 · nH2O. The
isopleth mentioned in part c is indicated by the dashed vertical line.

c) Starting at 44 wt.% Na2SO4, from 260 K up to 305.53 K we only have the solid salt hydrate
Na2SO4 · 10H2O. At 305.53 K it melts incongruently into a mixture of solid (so not-dissolved)
Na2SO4 and a saturated aqueous solution Na2SO4(aq) of that salt.
We use the lever rule to determine the relative amounts of the two phases for temperatures between
305.53 K and 330 K. For that we need mole fractions. Because we started at 260 K with the salt
hydrate Na2SO4 · 10H2O, the total relative amount (in moles) of Na2SO4 and H2O is and stays
during heating equal to

nNa2SO4

nH2O
=

1

10
= 0.10, so xNa2SO4

=
nNa2SO4

nNa2SO4 + nH2O
=

1

1 + 10
= 0.0909.

This overall constant composition at 44 wt.% Na2SO4, so at xNa2SO4
= 0.0909, is indicated by

the dashed isopleth in Figure 3. Because the line starting at point P, upwards is not vertical, the
relative amounts of the two phases, the solution Na2SO4(aq) and the solid Na2SO4(s) will change
on heating. The latter line, which corresponds to the saturated solution, is given by the function
T = 606.87 − 9.063wt, where wt is the wt.% Na2SO4 and T is in Kelvin, so wt = 606.87−T

9.063 . To
rewrite this to a mole fraction xNa2SO4 we first write (mi is the mass and Mi the molar mass of
component i)

wt

100
=

mNa2SO4

mNa2SO4
+mH2O

=

mNa2SO4

MNa2SO4
mNa2SO4

MNa2SO4
+

mH2O

MNa2SO4

=
nNa2SO4

nNa2SO4 +
MH2O

MNa2SO4
nH2O

.
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We can rewrite this to

nH2O = nNa2SO4

100− wt

wt
· MNa2SO4

MH2O
,

so in terms of mole fraction we find

xNa2SO4
=

nNa2SO4

nNa2SO4
+ nH2O

=
MH2O

MH2O + 100−wt
wt MNa2SO4

=
MH2O

MH2O +MNa2SO4

(
100·9.063
606.87−T − 1

) .
Filling in the values we find for the temperature dependence of the saturated solution

xNa2SO4
=

18.02

18.02 + 142.04
(

906.3
606.87−T − 1

) =
1

1 + 7.882
(

906.3
606.87−T − 1

)
The lever rule now gives the relative amounts of the two phases

nNa2SO4(aq)

nNa2SO4
(s)

=
1− x

(isopleth)
Na2SO4

x
(isopleth)
Na2SO4

− x
(sat. solution)
Na2SO4

=
1− 0.0909

0.0909−
[

1

1+7.882( 906.3
606.87−T −1)

] .
This gives

nNa2SO4
(aq)

nNa2SO4 (s)
= 28.90 at 305.53 K and 23.90 at 330 K.

d) Just above 305.53 K the system consists of the pure anhydrate Na2SO4(s) and a saturated aqueous
solution of Na2SO4. So all the water for this saturated solution comes from the (pure) salt hydrate
Na2SO4 · 10H2O. At point P x = 33.25 wt.%, so for the saturated solution at P we have

33.25

100
(142.04 + nH2O · 18.02) g/mol = 142.04 g/mol, so nH2O =

0.6675 · 142.04
0.3325 · 18.02

= 15.82.

Therefore, the solubility of Na2SO4 at 305.53 K as a mole fraction is x(305.53 K) = 1
1+15.82 = 0.059.

At 330 K the wt.% is 330−606.87
−9.063 = 30.55 and we find

30.55

100
(142.04 + nH2O · 18.02) g/mol = 142.04 g/mol, so nH2O =

0.6945 · 142.04
0.3055 · 18.02

= 17.92.

Therefore, the solubility of Na2SO4 at 330 K as a mole fraction is x(330 K) = 1
1+17.92 = 0.053.

The solubility decreases with increasing temperature, in contrast with most solutes.

Exercise 21

a) We chose o-xylene as component A and p-xylene as component B. At T = 70 ◦C we found
P ∗
A = 8.40 kPa and P ∗

B = 10.65 kPa. The liquid solution behaves ideal so Raoult’s law can be
applied; P = PA+PB = xAP

∗
A+(1−xA)P

∗
B , which gives a straight liquidus (upper curve) in figure

4. We have derived the total vapour pressure of yA for such a solution as P =
P∗

AP∗
B

P∗
A+(P∗

B−P∗
A)yA

,

which gives the curved line (lower curve) in the diagram. At a pressure of P = 9 kPa (horizontal
line) we find that zA = xA = 0.733 and zA = yA = 0.684 (as we found in exercise 11b).
In the entire diagram we have two components, so C = 2 in Gibbs’ phase rule. Above the liquidus
and below the vapourus (gas line) we find the liquid and vapour respectively. We thus have P = 1,
and therefore F = C − P + 2 = 3 in these regions. We have already chosen the temperature
(T = 70 ◦C), so we have two remaining variables, P and zA, which we can freely choose (F ′ = 2).
In the region between the two lines, both vapour and liquid are present. At a given pressure P
the correponding horizontal line intersects the liquidus and vapourus. At these intersections the
vapour and liquid are in equilibrium. The ratio between the amount of vapour and liquid can be
found using the lever rule. In this area we have P = 2, and therefore F = 2. The temperature
was already chosen, so upon choosing the pressure the composition of the vapour and liquid are
determined and vice-versa (F ′ = 1).
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Figure 4: The binary pressure composition diagram of exercise 11a,b.

b) The pointX describes a mixture with composition (xA, xB , xC) ≈ (0.36, 0.48, 0.16); the sum of these
mole fractions is indeed 1. That this is valid for the whole plot can be seen without mathematical
prove. Examine the three segments parallel to the borders of the diagram that run from point X to
the edge of the diagram; these are the bold segments in the left part of figure 5. The length of the
segments are xA, xB and xC respectively. Construct an equilateral triangle with the corresponding
edge for each of the segments. You can find these in the left part of figure 5 looking at the
combinations of a bold and bold dashed line. If you slide all three triangles to one edge, you can
see that the sum of the lengths of the triangles is equal to the length of the edge of the diagram.
The length of each of the triangles is the same as the length of the bold segments (since it is an
equilateral triangle). Each edge has a length of 1, so for all X: xA + xB + xC = 1.

c) Compare your answer to part d) of exercise 11. There are three components in the whole diagram
(with the exception of the edges), so for Gibbs’ phase rule we have C = 3 and F = 5−P . We have
already chosen the pressure and temperature, which reduces the amount of variables to F ′′ = 3−P ,
which implies F ′′ = 2 for the liquid and the vapour phase regions, and F ′′ = 1 for the region where
the two are in equilibrium.

d) We started with a binary mixture (A and B) in exercise 11a. At the given pressure and tem-
perature, the mole fractions turned out to be (xA = 0.733 and xB = 1 − xA = 0.267), which
is indicated in the right part of figure 5. In exercise 11c, a third component C was added to
the binary mixture. This means that in the ternary phase diagram we get a composition some-
where on the line between (xA, xB , xC) = (0.733, 0.267, 0) and (xA, xB , xC) = (0, 0, 1). The
last value corresponds to an infinite amount of C added. Somewhere on this line we find point
(xA, xB , xC) = (0.4000, 0.1455, 0.4545) which we found in exercise 11e.
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Figure 5: The ternary phase diagram showing the system of exercise 11 is drawn in the graph on the
right.
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