Tutorials 3 Thermodynamics 2, 2023/2024

Exercise 10

The density of an alcohol-water mixture (50 weight percent) is $\rho=0.914 \mathrm{~g} \mathrm{~cm}^{-3}$ at $25^{\circ} \mathrm{C}$. The partial molar volume of water in this mixture is $V_{\text {water }}=17.4 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$. The molar masses of alcohol and water are $M=46 \mathrm{~g} / \mathrm{mol}$ and $M=18 \mathrm{~g} / \mathrm{mol}$ respectively. Calculate the partial molar volume of alcohol in this mixture.

Exercise 11

The excess volume of a mixture is defined as $V^{E} \equiv V-V_{i d e a l}$, in which V is the real volume and $V_{\text {ideal }}$ is the volume of an ideal mixture, i.e. a mixture in which all molecules have the same interactions, no matter the type.
A mixture of propionic acid $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right.$, compound A) and oxane $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}\right.$, compound B) has a molar excess volume of $V_{m}^{E}=x_{A} x_{B}\left(a_{0}+a_{1}\left(x_{A}-x_{B}\right)\right)$ at a temperature $T_{0} . x_{i}=n_{i} / n$ represents the mole fraction of component $i, a_{0}=-2.4697 \mathrm{~cm}^{3} / \mathrm{mol}$ and $a_{1}=0.0608 \mathrm{~cm}^{3} / \mathrm{mol}$. The densities of propionic acid and oxane at T_{0} are $\rho_{A}=0.97174 \mathrm{~g} \mathrm{~cm}^{-3}$ and $\rho_{B}=0.86398 \mathrm{~g} \mathrm{~cm}^{-3}$ respectively.
a) Find an expression for the partial molar volumes of a binary ideal mixture in terms of the molar volumes.
b) Derive an expression for the partial molar volumes of the mixture of propionic acid and oxane in terms of the molar volumes, a_{0}, a_{1}, x_{A} and x_{B} at the given temperature T_{0}.
Hint: First rewrite $V^{E}=\left(n_{A}+n_{B}\right) V_{m}^{E}$ in terms of n_{A} and n_{B}.
c) Calculate the partial molar volumes of both components in an equimolar mixture, at T_{0}.

Exercise 12

o-xylene and m-xylene form an ideal solution, and their vapour pressures at $90{ }^{\circ} \mathrm{C}$ are 18.5 kPa and 21.9 kPa , respectively. The enthalpy of vaporization of o-xylene and m-xylene are $\Delta_{\text {vap }} H=36.24 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta_{v a p} H=35.66 \mathrm{~kJ} / \mathrm{mol}$, respectively. Assume that these enthalpies are independent of the temperature between $22^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$.
a) Determine the composition of the liquid mixture that boils at a temperature of $22^{\circ} \mathrm{C}$ and a pressure of 1.24 kPa . Note that the above mentioned values are based on a different temperature.
b) What is the composition of the vapour of the mixture.

Exercise 13

At a partial pressure of HCl of 760 mm Hg , the HCl -gas will dissolve in benzene upto a mole fraction of 0.040 .

The vapour pressure of pure benzene is 200 mm Hg .
This solution in benzene behaves like an ideal-dilute solution.
Calculate the mole fraction HCl in the solution if the total pressure of HCl -gas and benzene vapour is 760 mm Hg .

