
Tutorials 1 Thermodynamics 2, 2024/2025

Exercise 1

Consider a perfect gas of N CO2-molecules, which therefore behaves according to the equipartition
theorem. CO2 is a linear molecule.

a) How many translational and rotational degrees of freedom does the molecule as a whole have?

b) Each degree of freedom of the molecule (translational, rotational, vibrational) in fact comes from
the specific translations of the individual atoms in the molecule. What is the total number of
degrees of freedom for a CO2-molecule?

c) What is therefore the number of vibrational degrees of freedom for a CO2-molecule?

d) Determine the internal energy U per mole for the gas at T = 1000 K.

e) Determine the enthalpy H per mole for the gas at T = 1000 K.

f) Determine the molar heat capacity cV of the gas at T = 2000 K.

g) Determine the molar heat capacity cP of the gas at T = 2000 K.
According to the resourse section of Atkins (table 2B.1, ed. 11 or 12) the molar heat capacity at
constant pressure is given by cP (CO2) = 44.22 + 8.79 · 10−3T− 8.62 · 105T−2 Jmol−1K−1.
Compare your value with the result from the resourse section of Atkins.

Exercise 2

State functions.
A state function is a function f(x, y, z, · · ·) of independent variables x, y, z, · · · for which the function
has an unambiguous value for each of the combinations of variables x, y, z, · · · A function f(x, y) of two
independent variables is a state function if the following holds
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Consider the function g(x, y) = ln
(
xy2

)
− x2y3.

a) Examine if g(x, y) is a state function.

b) Write dg(x, y) as a total differential, so as dg(x, y) = gxdx+gydy and find an expression for gx(x, y)
and gy(x, y).

c) Find a Maxwell relation between gx(x, y) and gy(x, y) and check that the Maxwell relation indeed
holds.

d) Finally, we calculate ∆g between (x, y) = (1, 2) and (x, y) = (4, 3).
Because g(x, y) is a state function ∆g should be independent of the chosen integration path. Check
this by integrating dg(x, y) first at constant y and subsequently at constant x, and alternatively,
first at constant x and subsequently at constant y, which should give the same result.
Hint: use the total differential of g(x, y) for that and the expressions found for gx(x, y) and gy(x, y).

1



Exercise 3

a) Write down the characteristic equations for dU , dH, dA and dG for an electrical cell as a closed
system, by adding the additional electrical work term Edq, in which E is the EMF (electromotive
force, or cell potential, or preferably: cell voltage) and dq is the transferred electric charge.

b) Determine all Maxwell-relations that you can derive from these equations.

c) Determine the characteristic equations for dU , dH, dA and dG for an electrical cell as an open
system, by adding also the term µdn. Assume that there is only one type of compound present in
the cell.

d) Determine all the Maxwell-relations that you can derive from the resulting equation for the Gibbs
free energy.

Exercise 4

In this exercise we will use a Maxwell equation to rewrite the internal pressure (the isothermal volume
dependence of the internal energy) expression, ΠT ≡

(
∂U
∂V

)
T
to ΠT = T

(
∂P
∂T

)
V
−P . This latter equation

allows to determine ΠT for gases from relatively easily measurable properties of the system.

a) Show that for a perfect (molecular or atomic) gas, for which we have an expression for the internal
energy U , that ΠT = 0.

For a (molecular or atomic) van der Waals gas, the equation of state keeps track of the finite size of the
atoms or molecules in the gas as well as of the attraction between the particles:

P =
nRT

V − nb
− n2a

V 2
,

where a and b are coefficients characteristic for the gas involved, which respectively account for the at-
traction and repulsion of the molecules in a non-perfect gas.

b) To find the alternative expression for ΠT mentioned above, first show that we can write
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using the total differential of U(S, V ).

c) Next, use the characteristic equation for U(S, V ) and a Maxwell relation to get rid of the partial
derivative

(
∂S
∂V

)
T
, to rewrite the result of b) to the expression for ΠT we were looking for.

d) Apply this expression to CO2 as a non-perfect van der Waals gas, for which a = 3.610 atm dm6

mol−2 and b = 4.29 · 10−2 dm3 mol−1.
Use the result to determine the change in internal energy ∆U (in J) for an isothermal compression
of 2 mol of the gas from 400 dm3 to 200 dm3 at T = 2000 K.
Advice: always convert data to SI-units; 1 atm = 1.01325 · 105 Pa = 1.01325 · 105 N/m2.
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