
Tutorials 4 Thermodynamics 2, 2024/2025

Exercise 14

Results of measurements at 100 kPa on the liquid-vapour equilibrium of mixtures of oxygen and nitrogen
can be found in the following table (x and y represent the liquid and vapour composition respectively).

T [K] 77.3 78 80 82 84 86 88 90.2
x (O2) [%] 0 10 34 54 70 82 92 100
y (O2) [%] 0 2 11 22 35 52 73 100
P ∗(O2) [Torr] 154 171 225 294 377 479 601 760

a) Plot the temperature-composition diagram for the liquid and vapour in one diagram and indicate
which phase can be found where. Where do both phases coexist?

b) The partial vapour pressure is described by PA = xAP
∗
A in case of an ideal solution. Deviations from

ideal behavior are generally described by the activity aA according to PA = aAP
∗
A = γAxAP

∗
A, in

which γA is the activity coefficient. Find the activity coefficient of O2 for each of the compositions
in the table. Would you, based on your findings, consider this mixture to be an ideal solution?

Exercise 15

a) (exam 2020, problem 1d)
In the figure below 5 isobaric, temperature-mol fraction equilibrium phase diagrams, labeled 1 to
5, have been frawn for a binary system. In the vapour phase the two components form an ideal
mixture.
Indicate which of the diagrams is thermodynamically possible and which is not; An explanation is
not needed.
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Mixtures of 1-Butanol and chlorobenzene form a low-boiling azeotrope. The mole fractions of 1-butanol,
x in the liquid and y in the vapour, are given in the table below for various boiling temperatures and at
a pressure of P = 1.000 atm. The boiling point of chlorobenzene at 1.000 atm is 404.86 K.

T [K] 396.57 393.94 391.60 390.15 389.03 388.66 388.57
x 0.1065 0.1700 0.2646 0.3687 0.5017 0.6091 0.7171
y 0.2859 0.3691 0.4505 0.5138 0.5840 0.6409 0.7070

b) Construct (draw) the chlorobenzene-rich part of the temperature-composition phase diagram and
hatch the two-phase region in the diagram.
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c) Estimate the temperature at which a solution with a mole fraction of x = 0.300 starts to boil.

c) Determine the composition and relative quantities of the two phases present when a solution with
an initial mole fraction of x = 0.300 is heated to a temperature of 393.94 K.

Exercise 16

In this exercise we study the solubility of a solid (solute B) in a solvent A. With that we are studying a
solution (l)-solid (s) phase diagram.
The solubility of a compound is reached when on adding an increasing amount of solute to the solution,
the solute no longer dissolves. This means that solid (non-dissolved solute) is in equilibrium with the
solute in the saturated solution. Thus the solubility of B in A is determined by the equilibrium between
pure B(s) and B dissolved in A.

a) Derive the following expression for the solubility of a solute B in terms of the mole fraction xB as a
function of the molar fusion enthalpy ∆fusH and the molar fusion entropy ∆fusS of the solute for
an ideal solution of B in A (Assume that ∆fusH and ∆fusS are independent of the temperature).

lnxB =
µ∗
B(s)− µ∗

B(l)

RT
= −∆fusHB

RT
+

∆fusSB

R
.

Hint: A saturated solution corresponds to an equilibrium situation, so µB(l) = µB(s) = µ∗
B(s).

b) As an example we take a compound with the mysterious name 7αMNa, a hormone which suppresses
menopausal complaints. The solubility of 7αMNa in acetone is xB = 0.0429 at T = 318.5 K and
xB = 0.0171 at T = 279.3 K. Calculate the molar fusion enthalpy and entropy of 7αMNa.

c) For non-ideal solutions we need to revert to the activity in the expression for µB(l). Examine what
the expression will be; use that aB(s) ≈ 1, meaning that we are still dealing with a pure solid B(s).

d) In a measurement, the molar fusion enthalpy and entropy of 7αMNa at T = 318.5 K turn out to
be ∆fusH = 18.5 kJ/mol and ∆fusS = 35.0 J/molK respectively. Calculate the activity coefficient
γB at that temperature.

Exercise 17

In this exercise we consider once more the regular solution of Exercise 12, a non-ideal solution of two
liquids A and B at a constant pressure P . The non-ideal nature of this mixture is expressed in an excess
term GE in the Gibbs free energy. (x ≡ xA = 1− xB)

G = Gideal +GE = nAµ
∗
A(l) + nBµ

∗
B(l) + nRT [x lnx+ (1− x) ln(1− x)] + nβRTx(1− x),

in which β > 0. G as a function of the composition x can have either one or three extrema, depending
on he value of β and T . In figure 1 you can find a plot of ∆mixG

nRT for different values of β.

a) Determine the critical value for β, which is the value below which ∆mixG has one and above which
∆mixG has three extrema.
Hint: The critical value will depend on the number of inflection points the function has. You can
find this number by differentiating the function twice, and setting the result equal to zero.

The above mentioned expression is a good model for the mixing behaviour of certain binary liquid
mixtures. The parameter β often depends on the temperature according to (k is the Boltzmann constant).

β =
b

kT
.
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Figure 1: ∆mixG
nRT for β =1.6, 1.8, 2.0, 2.2, 2.4 en 2.6

b) What is the behaviour of such a mixture as a function of the temperature. Make a sketch of the
T − x phase diagram of the liquid mixture, and examine the consequences of the Gibbs phase rule
for the different phases.
Hint: As a consequence of the second law of thermodynamics, a mixture will always adopt the
lowest value of G at a given T , P and (overall) composition x.

c) Determine the amount of extrema for a negative value of β, and interpret the thermodynamic
relevance of β, for both positive and negative values, in terms of the excess enthalpy and excess
entropy of a mixing.
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